Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: Is Mars habitable? A critical examination of Professor Percival Lowell's book Mars and its canals with an alternative explanation by Wallace Alfred Russel

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 127 lines and 26974 words, and 3 pages

Now, Dr. Stoney finds that in order to retain water vapour permanently a planet must have a mass at least a quarter that of the earth. But the mass of Mars is only one-ninth that of the earth; therefore, unless there are some special conditions that prevent its loss, this gas cannot be present in the atmosphere. Mr. Lowell does not refer to this argument against his view, neither does he claim the evidence of spectroscopy in his favour. This was alleged more than thirty years ago to show the existence of water-vapour in the atmosphere of Mars, but of late years it has been doubted, and Mr. Lowell's complete silence on the subject, while laying stress on such a very weak and inconclusive argument as that from the tinge of colour that is observed a little distance from the edge of the diminishing snow-caps, shows that he himself does not think the fact to be thus proved. If he did he would hardly adduce such an argument for its presence as the following: "The melting of the caps on the one hand and their re-forming on the other affirm the presence of water-vapour in the Martian atmosphere, of whatever else that air consists" . Yet absolutely the only proof he gives that the caps are frozen water is the almost frivolous colour-argument above referred to!

It thus appears that spectroscopic observations are quite accordant with the calculations founded on the molecular theory of gases as to the absence of aqueous vapour, and therefore presumably of liquid water, from Mars. It is true that the spectroscopic argument is purely negative, and this may be due to the extreme delicacy of the observations required; but that dependent on the inability of the force of gravity to retain it is positive scientific evidence against its presence, and, till shown to be erroneous, must be held to be conclusive.

This absence of water is of itself conclusive against the existence of animal life, unless we enter the regions of pure conjecture as to the possibility of some other liquid being able to take its place, and that liquid being as omnipresent there as water is here. Mr. Lowell however never takes this ground, but bases his whole theory on the fundamental identity of the substance of the bodies of living organisms wherever they may exist in the solar system. In the next two chapters I shall discuss an equally essential condition, that of temperature, which affords a still more conclusive and even crushing argument against the suitability of Mars for the existence of organic life.

THE TEMPERATURE OF MARS--MR. LOWELL'S ESTIMATE.

We have now to consider a still more important and fundamental question, and one which Mr. Lowell does not grapple with in this volume, the actual temperatures on Mars due to its distance from the sun and the atmospheric conditions on which he himself lays so much stress. If I am not greatly mistaken we shall arrive at conclusions on this subject which are absolutely fatal to the conception of any high form of organic life being possible on this planet.

In order that the problem may be understood and its importance appreciated, it is necessary to explain the now generally accepted principles as to the causes which determine the temperatures on our earth, and, presumably, on all other planets whose conditions are not wholly unlike ours. The fact of the internal heat of the earth which becomes very perceptible even at the moderate depths reached in mines and deep borings, and in the deepest mines becomes a positive inconvenience, leads many people to suppose that the surface- temperatures of the earth are partly due to this cause. But it is now generally admitted that this is not the case, the reason being that all rocks and soils, in their natural compacted state, are exceedingly bad conductors of heat.

A striking illustration of this is the fact, that a stream of lava often continues to be red hot at a few feet depth for years after the surface is consolidated, and is hardly any warmer than that of the surrounding land. A still more remarkable case is that of a glacier on the south-east side of the highest cone of Etna underneath a lava stream with an intervening bed of volcanic sand only ten feet thick. This was visited by Sir Charles Lyell in 1828, and a second time thirty years later, when he made a very careful examination of the strata, and was quite satisfied that the sand and the lava stream together had actually preserved this mass of ice, which neither the heat of the lava above it at its first outflow, nor the continued heat rising from the great volcano below it, had been able to melt or perceptibly to diminish in thirty years. Another fact that points in the same direction is the existence over the whole floor of the deepest oceans of ice-cold water, which, originating in the polar seas, owing to its greater density sinks and creeps slowly along the ocean bottom to the depths of the Atlantic and Pacific, and is not perceptibly warmed by the internal heat of the earth.

Heat is now believed to be entirely due to ether-vibration, which produces a correspondingly rapid vibration of the molecules of matter, causing it to expand and producing all the phenomena we term 'heat.' We can conceive this vibration to increase indefinitely, and thus there would appear to be no necessary limit to the amount of heat possible, but we cannot conceive it to decrease indefinitely at the same uniform rate, as it must soon inevitably come to nothing. Now it has been found by experiment that gases under uniform pressure expand 1/273 of their volume for each degree Centigrade of increased temperature, so that in passing from 0? C. to 273? C. they are doubled in volume. They also decrease in volume at the same rate for each degree below 0? C. . Hence if this goes on to-273? C. a gas will have no volume, or it will undergo some change of nature. Hence this is called the zero of temperature, or the temperature to which any matter falls which receives no heat from any other matter. It is also sometimes called the temperature of space, or of the ether in a state of rest, if that is possible. All the gases have now been proved to become, first liquid and then solid, at temperatures considerably above this zero.

The only way to compare the proportional temperatures of bodies, whether on the earth or in space, is therefore by means of a scale beginning at this natural zero, instead of those scales founded on the artificial zero of the freezing point of water, or, as in Fahrenheit's, 32? below it. Only by using the natural zero and measuring continuously from it can we estimate temperatures in relative proportion to the amount of heat received. This is termed the absolute zero, and so that we start reckoning from that point it does not matter whether the scale adopted is the Centigrade or that of Fahrenheit.

Now if, as is the case with Mars, a planet receives only half the amount of solar heat that we receive, owing to its greater distance from the sun, and if the mean temperature of our earth is 60? F., this is equal to 551? F. on the absolute scale. It would therefore appear very simple to halve this amount and obtain 275.5? F. as the mean temperature of that planet. But this result is erroneous, because the actual amount of sun heat intercepted by a planet is only one condition out of many that determine its resulting temperature. Radiation, that is loss of heat, is going on concurrently with gain, and the rate of loss varies with the temperature according to a law recently discovered, the loss being much greater at high temperatures in proportion to the 4th power of the absolute temperature. Then, again, the whole heat intercepted by a planet does not reach its surface unless it has no atmosphere. When it has one, much is reflected or absorbed according to complex laws dependent on the density and composition of the atmosphere. Then, again, the heat that reaches the actual surface is partly reflected and partly absorbed, according to the nature of that surface--land or water, desert or forest or snow-clad--that part which is absorbed being the chief agent in raising the temperature of the surface and of the air in contact with it. Very important too is the loss of heat by radiation from these various heated surfaces at different rates; while the atmosphere itself sends back to the surface an ever varying portion of both this radiant and reflected heat according to distinct laws. Further difficulties arise from the fact that much of the sun's heat consists of dark or invisible rays, and it cannot therefore be measured by the quantity of light only.

From this rough statement it will be seen that the problem is an exceedingly complex one, not to be decided off-hand, or by any simple method. It has in fact been usually considered as insoluble, and only to be estimated by a more or less rough approximation, or by the method of general analogy from certain known facts. It will be seen, from what has been said in previous chapters, that Mr. Lowell, in his book, has used the latter method, and, by taking the presence of water and water-vapour in Mars as proved by the behaviour of the snow-caps and the bluish colour that results from their melting, has deduced a temperature above the freezing point of water, as prevalent in the equatorial regions permanently, and in the temperate and arctic zones during a portion of each year.

But as none of these estimates take account of the many complex factors which interfere with such direct and simple calculations, Mr. Lowell then proceeds to enunciate them, and work out mathematically the effects they produce:

The whole radiant energy of the sun on striking a planet becomes divided as follows: Part is reflected back into space, part absorbed by the atmosphere, part transmitted to the surface of the planet. This surface again reflects a portion and only the balance left goes to warm the planet.

He then refers to the actinometer and pyroheliometer, instruments for measuring the actual heat derived from the sun, and also to the Bolometer, an instrument invented by Professor Langley for measuring the invisible heat rays, which he has proved to extend to more than three times the length of the whole heat-spectrum as previously known, and has also shown that the invisible rays contribute 68 per cent, of the sun's total energy.

The last part of this paper, indicated under pars. 4 and 5, is the most elaborate, occupying eight pages, and it contains much that seems uncertain, if not erroneous. In particular, it seems very unlikely that under a clear sky over the whole earth we should only receive at the sea-level 0.23 of the solar rays which the earth intercepts . These data largely depend on observations made in California and other parts of the southern United States, where the lower atmosphere is exceptionally dust-laden. Till we have similar observations made in the tropical forest-regions, which cover so large an area, and where the atmosphere is purified by frequent rains, and also on the prairies and the great oceans, we cannot trust these very local observations for general conclusions affecting the whole earth. Later, in the same article , Mr. Lowell says: "Clouds transmit approximately 20 per cent. of the heat reaching them: a clear sky at sea-level 60 per cent. As the sky is half the time cloudy the mean transmission is 35 per cent." These statements seem incompatible with that quoted above.

The figure he uses in his calculations for the actual albedo of the earth, 0.75, is also not only improbable, but almost self-contradictory, because the albedo of cloud is 0.72, and that of the great cloud-covered planet, Jupiter, is given by Lowell as 0.75, while Zollner made it only 0.62. Again, Lowell gives Venus an albedo of 0.92, while Zollner made it only 0.50 and Mr. Gore 0.65. This shows the extreme uncertainty of these estimates, while the fact that both Venus and Jupiter are wholly cloud-covered, while we are only half-covered, renders it almost certain that our albedo is far less than Mr. Lowell makes it. It is evident that mathematical calculations founded upon such uncertain data cannot yield trustworthy results. But this is by no means the only case in which the data employed in this paper are of uncertain value. Everywhere we meet with figures of somewhat doubtful accuracy. Here we have somebody's 'estimate' quoted, there another person's 'observation,' and these are adopted without further remark and used in the various calculations leading to the result above quoted. It requires a practised mathematician, and one fully acquainted with the extensive literature of this subject, to examine these various data, and track them through the maze of formulae and figures so as to determine to what extent they affect the final result.

A NEW ESTIMATE OF THE TEMPERATURE OF MARS.

When we are presented with a complex problem depending on a great number of imperfectly ascertained data, we may often check the results thus obtained by the comparison of cases in which some of the more important of these data are identical, while others are at a maximum or a minimum. In the present case we can do this by a consideration of the Moon as compared with the Earth and with Mars.

In the moon we see the conditions that prevail in Mars both exaggerated and simplified. Mars has a very scanty atmosphere, the moon none at all, or if there is one it is so excessively scanty that the most refined observations have not detected it. All the complications arising from the possible nature of the atmosphere, and its complex effects upon reflection, absorption, and radiation are thus eliminated. The mean distance of the moon from the sun being identical with that of the earth, the total amount of heat intercepted must also be identical; only in this case the whole of it reaches the surface instead of one-fourth only, according to Mr. Lowell's estimate for the earth.

Now, by the most refined observations with his Bolometer, Mr. Langley was able to determine the temperature of the moon's surface exposed to undimmed sunshine for fourteen days together; and he found that, even in that portion of it on which the sun was shining almost vertically, the temperature rarely rose above the freezing point of water. However extraordinary this result may seem, it is really a striking confirmation of the accuracy of the general laws determining temperature which I have endeavoured to explain in the preceding chapter. For the same surface which has had fourteen days of sunshine has also had a preceding fourteen days of darkness, during which the heat which it had accumulated in its surface layers would have been lost by free radiation into stellar space. It thus acquires during its day a maximum temperature of only 491? F. absolute, while its minimum, after 14 days' continuous radiation, must be very low, and is, with much reason, supposed to approach the absolute zero.

Now, as it is admitted that our dense atmosphere, however dry and clear, absorbs and reflects some considerable portion of the solar heat, we shall certainly underestimate the radiation from the moon's surface during its long night if we take as the basis of our calculation a lowering of temperature amounting to 100? F. during twelve hours, as not unfrequently occurs with us. Using these data--with Stefan's law of decrease of radiation as the 4th power of the temperature--a mathematical friend finds that the temperature of the moon's surface would be reduced during the lunar night to nearly 200? F. absolute .

Although such a calculation as the above may afford us a good approximation to the rate of loss of heat by Mars with its very scanty atmosphere, we have now good evidence that in the case of the moon the loss is much more rapid. Two independent workers have investigated this subject with very accordant results--Dr. Boeddicker, with Lord Rosse's 3-foot reflector and a Thermopile to measure the heat, and Mr. Frank Very, with a glass reflector of 12 inches diameter and the Bolometer invented by Mr. Langley. The very striking and unexpected fact in which these observers agree is the sudden disappearance of much of the stored-up heat during the comparatively short duration of a total eclipse of the moon--less than two hours of complete darkness, and about twice that period of partial obscuration.

This extremely rapid loss of heat by radiation, at first sight so improbable as to be almost incredible, may perhaps be to some extent explained by the physical constitution of the moon's surface, which, from a theoretical point of view, does not appear to have received the attention it deserves. It is clear that our satellite has been long subjected to volcanic eruptions over its whole visible face, and these have evidently been of an explosive nature, so as to build up the very lofty cones and craters, as well as thousands of smaller ones, which, owing to the absence of any degrading or denuding agencies, have remained piled up as they were first formed.

As the surface layers of the earth must have been the lightest, they would necessarily, when broken up by this gigantic convulsion, have come together to form the exterior of the new satellite, and be soon adjusted by the forces of gravity and tidal disturbance into a more or less irregular spheroidal form, all whose interstices and cavities would be filled up and connected together by the liquid or semi-liquid mass forced up between them. Thence-forward, as the moon increased its distance and reduced its time of rotation, in the way explained by Sir Robert Ball, there would necessarily commence a process of escape of the imprisoned gases at every fissure and at all points and lines of weakness, giving rise to numerous volcanic outlets, which, being subjected only to the small force of lunar gravity , would, in the course of ages, pile up those gigantic cones and ridges which form its great characteristic.

Returning now to the problem of the moon's temperature, I think the phenomena this presents may be in part due to the mode of formation here described. For, its entire surface being the result of long-continued gaseous explosions, all the volcanic products--scoriae, pumice, and ashes--would necessarily be highly porous throughout; and, never having been compacted by water-action, as on the earth, and there having been no winds to carry the finer dust so as to fill up their pores and fissures, the whole of the surface material to a very considerable depth must be loose and porous to a high degree. This condition has been further increased owing to the small power of gravity and the extreme irregularity of the surface, consisting very largely of lofty cones and ridges very loosely piled up to enormous heights.

Now this condition of the substance of the moon's surface is such as would produce a high specific heat, so that it would absorb a large amount of heat in proportion to the rise of temperature produced, the heat being conducted downwards to a considerable depth. Owing, however, to the total absence of atmosphere radiation would very rapidly cool the surface, but afterwards more slowly, both on account of the action of Stefan's law and because the heat stored up in the deeper portions could be carried to the surface by conduction only, and with extreme slowness.

Two other diagrams show the distribution of heat at the time of full-moon, one half of the curve showing the temperatures along the equator from the edge of the disc to the centre, the other along a meridian from this centre to the pole. This diagram exhibits the quick rise of temperature of the oblique rim of the moon and the nearly uniform heat of the central half of its surface; the diminution of heat towards the pole, however, is slower for the first half and more rapid for the latter portion.

This somewhat lengthy account of the actual state of the moon's surface and temperature is of very great importance in our present enquiry, because it shows us the extraordinary difference in mean and extreme temperatures of two bodies situated at the same distance from the sun, and therefore receiving exactly the same amount of solar heat per unit of surface. We have learned also what are the main causes of this almost incredible difference, namely: a remarkably rugged surface with porous and probably cavernous rock-texture, leading to extremely rapid radiation of heat in the one; as compared with a comparatively even and well-compacted surface largely clad with vegetation, leading to comparatively slow and gradual loss by radiation in the other: and , these results being greatly intensified by the total absence of a protecting atmosphere in the former, while a dense and cloudy atmosphere with an ever-present supply of water-vapour, accumulates and equalises the heat received by the latter.

The only other essential difference in the two bodies which may possibly aid in the production of this marvellous result, is the fact of our day and night having a mean length of 12 hours, while those of the moon are about 14-1/2 of our days. But the altogether unexpected fact, in which two independent enquirers agree, that during the few hours' duration of a total eclipse of the moon so large a proportion of the heat is lost by radiation renders it almost certain that the resulting low temperature would be not very much less if the moon had a day and night the same length as our own.

The great lesson we learn by this extreme contrast of conditions supplied to us by nature, as if to enable us to solve some of her problems, is, the overwhelming importance, first, of a dense and well-compacted surface, due to water-action and strong gravitative force; secondly, of a more or less general coat of vegetation; and, thirdly, of a dense vapour-laden atmosphere. These three favourable conditions result in a mean temperature of about +60? F. with a range seldom exceeding 40? above or below it, while over more than half the land-surface of the earth the temperature rarely falls below the freezing point. On the other hand, we have a globe of the same materials and at the same distance from the sun, with a maximum temperature of freezing water, and a minimum not very far from the absolute zero, the monthly mean being probably much below the freezing point of carbonic-acid gas--a difference entirely due to the absence of these three favourable conditions.

But we know that it is far from being earth-like in the very conditions which we have found to be those which determine the extremely different temperatures of the earth, and moon; and, as regards each of these, we shall find that, so far as it differs from the earth, it approximates to the less favourable conditions that prevail in the moon. The first of these conditions which we have found to be essential in regulating the absorption and radiation of heat, and thus raising the mean temperature of a planet, is a compact surface well covered with vegetation, two conditions arising from, and absolutely dependent on, an ample amount of water. But Mr. Lowell himself assures us, as a fact of which he has no doubt, that there are no permanent bodies of water, great or small, upon Mars; that rain, and consequently rivers, are totally wanting; that its sky is almost constantly clear, and that what appear to be clouds are not formed of water-vapour but of dust. He dwells, emphatically, on the terrible desert conditions of the greater part of the surface of the planet.

That being the case now, we have no right to assume that it has ever been otherwise; and, taking full account of the fact, neither denied nor disputed by Mr. Lowell, that the force of gravity on Mars is not sufficient to retain water-vapour in its atmosphere, we must conclude that the surface of that planet, like that of the moon, has been moulded by some form of volcanic action modified probably by wind, but not by water. Adding to this, that the force of gravity on Mars is nearer that of the moon than to that of the earth, and we may r reasonably conclude that its surface is formed of volcanic matter in a light and porous condition, and therefore highly favourable for the rapid loss of surface heat by radiation. The surface-conditions of Mars are therefore, presumably, much more like those of the moon than like those of the earth.

The next condition favourable to the storing up of heat--a covering of vegetation--is almost certainly absent from Mars except, possibly, over limited areas and for short periods. In this feature also the surface of Mars approximates much nearer to lunar than to earth-conditions. The third condition--a dense, vapour-laden atmosphere--is also wanting in Mars. For although it possesses an atmosphere it is estimated by Mr. Lowell to have a pressure equivalent to only 2-1/2 inches of mercury with us, giving it a density of only one-twelfth part that of ours; while aqueous vapour, the chief accumulator of heat, cannot permanently exist in it, and, notwithstanding repeated spectroscopic observations for the purpose of detecting it, has never been proved to exist.

Mr. Lowell is however so regardless of the ordinary teachings of meteorological science that he actually accounts for the supposed mild climate of the polar regions of Mars by the absence of water on its surface and in its atmosphere. He concludes his fifth chapter with the following words: "Could our earth but get rid of its oceans, we too might have temperate regions stretching to the poles." Here he runs counter to two of the best-established laws of terrestrial climatology-- the wonderful equalising effects of warm ocean-currents which are the chief agents in diminishing polar cold; the equally striking effects of warm moist winds derived from these oceans, and the great storehouse of heat we possess in our vapour-laden atmosphere, its vapour being primarily derived from these same oceans! But, in Mr. Lowell's opinion, all our meteorologists are quite mistaken. Our oceans are our great drawbacks. Only get rid of them and we should enjoy the exquisite climate of Mars--with its absence of clouds and fog, of rain or rivers, and its delightful expanses of perennial deserts, varied towards the poles by a scanty snow-fall in winter, the melting of which might, with great care, supply us with the necessary moisture to grow wheat and cabbages for about one-tenth, or more likely one-hundredth, of our present population. I hope I may be excused for not treating such an argument seriously. The various considerations now advanced, especially those which show the enormous cumulative and conservative effect of our dense and water-laden atmosphere, and the disastrous effect--judging by the actual condition of the moon--which the loss of it would have upon our temperature, seem to me quite sufficient to demonstrate important errors in the data or fallacies in the complex mathematical argument by which Mr. Lowell has attempted to uphold his views as to the temperature and consequent climatic conditions of Mars. In concluding this portion of my discussion of the problem of Mars, I wish to call attention to the fact that my argument, founded upon a comparison of the physical conditions of the earth and moon with those of Mars, is dependent upon a small number of generally admitted scientific facts; while the conclusions drawn from those facts are simple and direct, requiring no mathematical knowledge to follow them, or to appreciate their weight and cogency. I claim for them, therefore, that they are in no degree speculative, but in their data and methods exclusively scientific. In the next chapter I will put forward a suggestion as to how the very curious markings upon the surface of Mars may possibly be interpreted, so as to be in harmony with the planet's actual physical condition and its not improbable origin and past history.

A SUGGESTION AS TO THE 'CANALS' OF MARS.

The special characteristics of the numerous lines which intersect the whole of the equatorial and temperate regions of Mars are, their straightness combined with their enormous length. It is this which has led Mr. Lowell to term them 'non-natural features.' Schiaparelli, in his earlier drawings, showed them curved and of comparatively great width. Later, he found them to be straight fine lines when seen under the best conditions, just as Mr. Lowell has always seen them in the pure atmosphere of his observatory. Both of these observers were at first doubtful of their reality, but persistent observation continued at many successive oppositions compelled acceptance of them as actual features of the planet's disc. So many other observers have now seen them that the objection of unreality seems no longer valid.

Mr. Lowell urges, however, that their perfect straightness, their extreme tenuity, their uniformity throughout their whole length, the dual character of many of them, their relation to the 'oases' and the form and position of these round black spots, are all proofs of artificiality and are suggestive of design. And considering that some of them are actually as long as from Boston to San Francisco, and relatively to their globe as long as from London to Bombay, his objection that "no natural phenomena within our knowledge show such regularity on such a scale" seems, at first, a mighty one.

It is certainly true that we can point to nothing exactly like them either on the earth or on the moon, and these are the only two planetary bodies we are in a position to compare with Mars. Yet even these do, I think, afford us some hints towards an interpretation of the mysterious lines. But as our knowledge of the internal structure and past history even of our earth is still imperfect, that of the moon only conjectural, and that of Mars a perfect blank, it is not perhaps surprising that the surface-features of the latter do not correspond with those of either of the others.

This opinion is especially important because, next to Mr. Lowell, Mr. Pickering is perhaps the astronomer who has given most attention to Mars during the last fifteen years. He was for some time at Flagstaff with Mr. Lowell, and it was he who discovered the oases or craterlets, and who originated the idea that we did not see the 'canals' themselves but only the vegetable growth on their borders. He also observed Mars in the Southern Hemisphere at Arequipa; and he has since made an elaborate study of the moon by means of a specially constructed telescope of 135 feet focal length, which produced a direct image on photographic plates nearly 16 inches in diameter.

It is clear therefore that Mr. Lowell's views as to the artificial nature of the 'canals' of Mars are not accepted by an astronomer of equal knowledge and still wider experience. Yet Professor Pickering's alternative view is more a suggestion than an explanation, because there is no attempt to account for the enormous length and perfect straightness of the lines on Mars, so different from anything that is found either on our earth or on the moon. There must evidently be some great peculiarity of structure or of conditions on Mars to account for these features, and I shall now attempt to point out what this peculiarity is and how it may have arisen.

During the last quarter of a century a considerable change has come over the opinions of astronomers as regards the probable origin of the Solar System. The large amount of knowledge of the stellar universe, and especially of nebulae, of comets and of meteor-streams which we now possess, together with many other phenomena, such as the constitution of Saturn's rings, the great number and extent of the minor planets, and generally of the vast amount of matter in the form of meteor-rings and meteoric dust in and around our system, have all pointed to a different origin for the planets and their satellites than that formulated by Laplace as the Nebular hypothesis.

It is now seen more clearly than at any earlier period, that most of the planets possess special characteristics which distinguish them from one another, and that such an origin as Laplace suggested--the slow cooling and contraction of one vast sun-mist or nebula, besides presenting inherent difficulties--many think them impossibilities--in itself does not afford an adequate explanation of these peculiarities. Hence has arisen what is termed the Meteoritic theory, which has been ably advocated for many years by Sir Norman Lockyer, and with some unimportant modifications is now becoming widely accepted. Briefly, this theory is, that the planets have been formed by the slow aggregation of solid particles around centres of greatest condensation; but as many of my readers may be altogether unacquainted with it, I will here give a very clear statement of what it is, from Professor J.W. Gregory's presidential address to the Geological Section of the British Association of the present year. He began by saying that these modern views were of far more practical use to men of science than that of Laplace, and that they give us a history of the world consistent with the actual records of geology. He then continues:

"According to Sir Norman Lockyer's Meteoritic Hypothesis, nebulae, comets, and many so-called stars consist of swarms of meteorites which, though normally cold and dark, are heated by repeated collisions, and so become luminous. They may even be volatilised into glowing meteoric vapour; but in time this heat is dissipated, and the force of gravity condenses a meteoritic swarm into a single globe. 'Some of the swarms are,' says Lockyer, 'truly members of the solar system,' and some of these travel round the sun in nearly circular orbits, like planets. They may be regarded as infinitesimal planets, and so Chamberlain calls them 'planetismals.'

"The planetismal theory is a development of the meteoritic theory, and presents it in an especially attractive guise. It regards meteorites as very sparsely distributed through space, and gravity as powerless to collect them into dense groups. So it assigns the parentage of the solar system to a spiral nebula composed of planetismals, and the planets as formed from knots in the nebula, where many planetismals had been concentrated near the intersections of their orbits. These groups of meteorites, already as dense as a swarm of bees, were then packed closer by the influence of gravity, and the contracting mass was heated by the pressure, even above the normal melting-point of the material, which was kept rigid by the weight of the overlying layers."

This planet, lying between two of much greater mass, has evidently had less material from which to be formed by aggregation; and if we assume--as in the absence of evidence to the contrary we have a right to do--that its beginnings were not much later than those of the earth, then its smaller size shows that it has in all probability aggregated very much more slowly. But the internal heat acquired by a planet while forming in this manner will depend upon the rate at which it aggregates and the velocity with which the planetismals' fall into it, and this velocity will increase with its mass and consequent force of gravity. In the early stages of a planet's growth it will probably remain cold, the small amount of heat produced by each impact being lost by radiation before the next one occurs; and with a small and slowly aggregating planet this condition will prevail till it approaches its full size. Then only will its gravitative force be sufficient to cause incoming matter to fall upon it with so powerful an impact as to produce intense heat. Further, the compressive force of a small planet will be a less effective heat-producing agency than in the case of a larger one.

The earth we know has acquired a large amount of internal heat, probably sufficient to liquefy its whole interior; but Mars has only one-ninth part the mass of the earth, and it is quite possible, and even probable, that its comparatively small attractive force would never have liquefied or even permanently heated the more central portions of its mass. This being admitted, I suggest the following course of events as quite possible, and not even improbable, in the case of this planet. During the whole of its early growth, and till it acquired nearly its present diameter, its rate of aggregation was so slow that the planetismals falling upon it, though they might have been heated and even partially liquefied by the impact, were never in such quantity as to produce any considerable heating effect on the whole mass, and each local rise of temperature was soon lost by radiation. The planet thus grew as a solid and cold mass, compacted together by the impact of the incoming matter as well as by its slowly increasing gravitative force. But when it had attained to within perhaps 100, perhaps 50 miles, or less, of its present diameter, a great change occurred in the opportunity for further growth. Some large and dense swarm of meteorites, perhaps containing a number of bodies of the size of the asteroids, came within the range of the sun's attraction and were drawn by it into an orbit which crossed that of Mars at such a small angle that the planet was able at each revolution to capture a considerable number of them. The result might then be that, as in the case of the earth, the continuous inpour of the fresh matter first heated, and later on liquefied the greater part of it as well perhaps as a thin layer of the planet's original surface; so that when in due course the whole of the meteor-swarm had been captured, Mars had acquired its present mass, but would consist of an intensely heated, and either liquid or plastic thin outer shell resting upon a cold and solid interior.

The size and position of the two recently discovered satellites of Mars, which are believed to be not more than ten miles in diameter, the more remote revolving around its primary very little slower than the planet rotates, while the nearer one, which is considerably less distant from the planet's surface than its own antipodes and revolves around it more than three times during the Martian day, may perhaps be looked upon as the remnants of the great meteor-swarm which completed the Martian development, and which are perhaps themselves destined at some distant period to fall into the planet. Should future astronomers witness the phenomenon the effect produced upon its surface would be full of instruction.

As the result of such an origin as that suggested, Mars would possess a structure which, in the essential feature of heat-distribution, would be the very opposite of that which is believed to characterise the earth, yet it might have been produced by a very slight modification of the same process. This peculiar heat-distribution, together with a much smaller mass and gravitative force, would lead to a very different development of the surface and an altogether diverse geological history from ours, which has throughout been profoundly influenced by its heated interior, its vast supply of water, and the continuous physical and chemical reactions between the interior and the crust.

These reactions have, in our case, been of substantially the same nature, and very nearly of the same degree of intensity throughout the whole vast eons of geological time, and they have resulted in a wonderfully complex succession of rock-formations--volcanic, plutonic, and sedimentary--more or less intermingled throughout the whole series, here remaining horizontal as when first deposited, there upheaved or depressed, fractured or crushed, inclined or contorted; denuded by rain and rivers with the assistance of heat and cold, of frost and ice, in an unceasing series of changes, so that however varied the surface may be, with hill and dale, plains and uplands, mountain ranges and deep intervening valleys, these are as nothing to the diversities of interior structure, as exhibited in the sides of every alpine valley or precipitous escarpment, and made known to us by the work of the miner and the well-borer in every part of the world.

Yet we are not ourselves by any means devoid of 'straight lines' structurally produced, in spite of every obstacle of diversity of form and texture, of softness and hardness, of lamination or crystallisation, which are adverse to such developments. Examples of these are the numerous 'faults' which occur in the harder rocks, and which often extend for great distances in almost perfect straight lines. In our own country we have the Tyneside and Craven faults in the North of England, which are 30 miles long and often 20 yards wide; but even more striking is the great Cleveland Dyke--a wall of volcanic rock dipping slightly towards the south, but sometimes being almost vertical, and stretching across the country, over hill and dale, in an almost perfect straight line from a point on the coast ten miles north of Scarborough, in a west-by-north direction, passing about two miles south of Stockton and terminating about six miles north-by-east of Barnard Castle, a distance of very nearly 60 miles. The great fault between the Highlands and Lowlands of Scotland extends across the country from Stonehaven to near Helensburgh, a distance of 120 miles; and there are very many more of less importance.

Much more extensive are some of the great continental dislocations, often forming valleys of considerable width and length. The Upper Rhine flows in one of these great valleys of subsidence for about 180 miles, from Mulhausen to Frankfort, in a generally straight line, though modified by denudation. Vaster still is the valley of the Jordan through the Sea of Galilee to the Dead Sea, continued by the Wady Arabah to the Gulf of Akaba, believed to form one vast geological depression or fracture extending in a straight line for 400 miles.

Add to tbrJar First Page Next Page Prev Page

Back to top Use Dark Theme