Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: Darwinism (1889) An exposition of the theory of natural selection with some of its applications by Wallace Alfred Russel

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 1296 lines and 174560 words, and 26 pages

"The soil is naturally fertile and favourable for the growth of trees, and they grow luxuriantly wherever they are protected. The eucalyptus is covering large tracts wherever it is enclosed, and willows, poplars, and the fig surround every estancia when fenced in.

"The open plains are covered with droves of horses and cattle, and overrun by numberless wild rodents, the original tenants of the pampas. During the long periods of drought, which are so great a scourge to the country, these animals are starved by thousands, destroying, in their efforts to live, every vestige of vegetation. In one of these 'siccos,' at the time of my visit, no less than 50,000 head of oxen and sheep and horses perished from starvation and thirst, after tearing deep out of the soil every trace of vegetation, including the wiry roots of the pampas-grass. Under such circumstances the existence of an unprotected tree is impossible. The only plants that hold their own, in addition to the indestructible thistles, grasses, and clover, are a little herbaceous oxalis, producing viviparous buds of extraordinary vitality, a few poisonous species, such as the hemlock, and a few tough, thorny dwarf-acacias and wiry rushes, which even a starving rat refuses.

"Although the cattle are a modern introduction, the numberless indigenous rodents must always have effectually prevented the introduction of any other species of plants; large tracts are still honeycombed by the ubiquitous biscacho, a gigantic rabbit; and numerous other rodents still exist, including rats and mice, pampas-hares, and the great nutria and carpincho on the river banks."

Mr. Clark further remarks on the desperate struggle for existence which characterises the bordering fertile zones, where rivers and marshy plains permit a more luxuriant and varied vegetable and animal life. After describing how the river sometimes rose 30 feet in eight hours, doing immense destruction, and the abundance of the larger carnivora and large reptiles on its banks, he goes on: "But it was among the flora that the principle of natural selection was most prominently displayed. In such a district--overrun with rodents and escaped cattle, subject to floods that carried away whole islands of botany, and especially to droughts that dried up the lakes and almost the river itself--no ordinary plant could live, even on this rich and watered alluvial debris. The only plants that escaped the cattle were such as were either poisonous, or thorny, or resinous, or indestructibly tough. Hence we had only a great development of solanums, talas, acacias, euphorbias, and laurels. The buttercup is replaced by the little poisonous yellow oxalis with its viviparous buds; the passion-flowers, asclepiads, bignonias, convolvuluses, and climbing leguminous plants escape both floods and cattle by climbing the highest trees and towering overhead in a flood of bloom. The ground plants are the portulacas, turneras, and cenotheras, bitter and ephemeral, on the bare rock, and almost independent of any other moisture than the heavy dews. The pontederias, alismas, and plantago, with grasses and sedges, derive protection from the deep and brilliant pools; and though at first sight the 'monte' doubtless impresses the traveller as a scene of the wildest confusion and ruin, yet, on closer examination, we found it far more remarkable as a manifestation of harmony and law, and a striking example of the marvellous power which plants, like animals, possess, of adapting themselves to the local peculiarities of their habitat, whether in the fertile shades of the luxuriant 'monte' or on the arid, parched-up plains of the treeless pampas."

A curious example of the struggle between plants has been communicated to me by Mr. John Ennis, a resident in New Zealand. The English water-cress grows so luxuriantly in that country as to completely choke up the rivers, sometimes leading to disastrous floods, and necessitating great outlay to keep the stream open. But a natural remedy has now been found in planting willows on the banks. The roots of these trees penetrate the bed of the stream in every direction, and the water-cress, unable to obtain the requisite amount of nourishment, gradually disappears.

The facts which have now been adduced, sufficiently prove that there is a continual competition, and struggle, and war going on in nature, and that each species of animal and plant affects many others in complex and often unexpected ways. We will now proceed to show the fundamental cause of this struggle, and to prove that it is ever acting over the whole field of nature, and that no single species of animal or plant can possibly escape from it. This results from the fact of the rapid increase, in a geometrical ratio, of all the species of animals and plants. In the lower orders this increase is especially rapid, a single flesh-fly producing 20,000 larvae, and these growing so quickly that they reach their full size in five days; hence the great Swedish naturalist, Linnaeus, asserted that a dead horse would be devoured by three of these flies as quickly as by a lion. Each of these larvae remains in the pupa state about five or six days, so that each parent fly may be increased ten thousand-fold in a fortnight. Supposing they went on increasing at this rate during only three months of summer, there would result one hundred millions of millions of millions for each fly at the commencement of summer,--a number greater probably than exists at any one time in the whole world. And this is only one species, while there are thousands of other species increasing also at an enormous rate; so that, if they were unchecked, the whole atmosphere would be dense with flies, and all animal food and much of animal life would be destroyed by them. To prevent this tremendous increase there must be incessant war against these insects, by insectivorous birds and reptiles as well as by other insects, in the larva as well as in the perfect state, by the action of the elements in the form of rain, hail, or drought, and by other unknown causes; yet we see nothing of this ever-present war, though by its means alone, perhaps, we are saved from famine and pestilence.

Let us now consider a less extreme and more familiar case. We possess a considerable number of birds which, like the redbreast, sparrow, the four common titmice, the thrush, and the blackbird, stay with us all the year round These lay on an average six eggs, but, as several of them have two or more broods a year, ten will be below the average of the year's increase. Such birds as these often live from fifteen to twenty years in confinement, and we cannot suppose them to live shorter lives in a state of nature, if unmolested; but to avoid possible exaggeration we will take only ten years as the average duration of their lives. Now, if we start with a single pair, and these are allowed to live and breed, unmolested, till they die at the end of ten years,--as they might do if turned loose into a good-sized island with ample vegetable and insect food, but no other competing or destructive birds or quadrupeds--their numbers would amount to more than twenty millions. But we know very well that our bird population is no greater, on the average, now than it was ten years ago. Year by year it may fluctuate a little according as the winters are more or less severe, or from other causes, but on the whole there is no increase. What, then, becomes of the enormous surplus population annually produced? It is evident they must all die or be killed, somehow; and as the increase is, on the average, about five to one, it follows that, if the average number of birds of all kinds in our islands is taken at ten millions--and this is probably far under the mark--then about fifty millions of birds, including eggs as possible birds, must annually die or be destroyed. Yet we see nothing, or almost nothing, of this tremendous slaughter of the innocents going on all around us. In severe winters a few birds are found dead, and a few feathers or mangled remains show us where a wood-pigeon or some other bird has been destroyed by a hawk, but no one would imagine that five times as many birds as the total number in the country in early spring die every year. No doubt a considerable proportion of these do not die here but during or after migration to other countries, but others which are bred in distant countries come here, and thus balance the account. Again, as the average number of young produced is four or five times that of the parents, we ought to have at least five times as many birds in the country at the end of summer as at the beginning, and there is certainly no such enormous disproportion as this. The fact is, that the destruction commences, and is probably most severe, with nestling birds, which are often killed by heavy rains or blown away by severe storms, or left to die of hunger if either of the parents is killed; while they offer a defenceless prey to jackdaws, jays, and magpies, and not a few are ejected from their nests by their foster-brothers the cuckoos. As soon as they are fledged and begin to leave the nest great numbers are destroyed by buzzards, sparrow-hawks, and shrikes. Of those which migrate in autumn a considerable proportion are probably lost at sea or otherwise destroyed before they reach a place of safety; while those which remain with us are greatly thinned by cold and starvation during severe winters. Exactly the same thing goes on with every species of wild animal and plant from the lowest to the highest. All breed at such a rate, that in a few years the progeny of any one species would, if allowed to increase unchecked, alone monopolise the land; but all alike are kept within bounds by various destructive agencies, so that, though the numbers of each may fluctuate, they can never permanently increase except at the expense of some others, which must proportionately decrease.

As the facts now stated are the very foundation of the theory we are considering, and the enormous increase and perpetual destruction continually going on require to be kept ever present in the mind, some direct evidence of actual cases of increase must be adduced. That even the larger animals, which breed comparatively slowly, increase enormously when placed under favourable conditions in new countries, is shown by the rapid spread of cattle and horses in America. Columbus, in his second voyage, left a few black cattle at St. Domingo, and these ran wild and increased so much that, twenty-seven years afterwards, herds of from 4000 to 8000 head were not uncommon. Cattle were afterwards taken from this island to Mexico and to other parts of America, and in 1587, sixty-five years after the conquest of Mexico, the Spaniards exported 64,350 hides from that country and 35,444 from St. Domingo, an indication of the vast numbers of these animals which must then have existed there, since those captured and killed could have been only a small portion of the whole. In the pampas of Buenos Ayres there were, at the end of the last century, about twelve million cows and three million horses, besides great numbers in all other parts of America where open pastures offered suitable conditions. Asses, about fifty years after their introduction, ran wild and multiplied so amazingly in Quito, that the Spanish traveller Ulloa describes them as being a nuisance. They grazed together in great herds, defending themselves with their mouths, and if a horse strayed among them they all fell upon him and did not cease biting and kicking till they left him dead. Hogs were turned out in St. Domingo by Columbus in 1493, and the Spaniards took them to other places where they settled, the result being, that in about half a century these animals were found in great numbers over a large part of America, from 25? north to 40? south latitude. More recently, in New Zealand, pigs have multiplied so greatly in a wild state as to be a serious nuisance and injury to agriculture. To give some idea of their numbers, it is stated that in the province of Nelson there were killed in twenty months 25,000 wild pigs. Now, in the case of all these animals, we know that in their native countries, and even in America at the present time, they do not increase at all in numbers; therefore the whole normal increase must be kept down, year by year, by natural or artificial means of destruction.

In the case of plants, the power of increase is even greater and its effects more distinctly visible. Hundreds of square miles of the plains of La Plata are now covered with two or three species of European thistle, often to the exclusion of almost every other plant; but in the native countries of these thistles they occupy, except in cultivated or waste ground, a very subordinate part in the vegetation. Some American plants, like the cotton-weed , have now become common weeds over a large portion of the tropics. White clover spreads over all the temperate regions of the world, and in New Zealand is exterminating many native species, including even the native flax , a large plant with iris-like leaves 5 or 6 feet high. Mr. W.L. Travers has paid much attention to the effects of introduced plants in New Zealand, and notes the following species as being especially remarkable. The common knotgrass grows most luxuriantly, single plants covering a space 4 or 5 feet in diameter, and sending their roots 3 or 4 feet deep. A large sub-aquatic dock abounds in every river-bed, even far up among the mountains. The common sow-thistle grows all over the country up to an elevation of 6000 feet. The water-cress grows with amazing vigour in many of the rivers, forming stems 12 feet long and 3/4 inch in diameter, and completely choking them up. It cost ?300 a year to keep the Avon at Christchurch free from it. The sorrel covers hundreds of acres with a sheet of red. It forms a dense mat, exterminating other plants, and preventing cultivation. It can, however, be itself exterminated by sowing the ground with red clover, which will also vanquish the Polygonum aviculare. The most noxious weed in New Zealand appears, however, to be the Hypochaeris radicata, a coarse yellow-flowered composite not uncommon in our meadows and waste places. This has been introduced with grass seeds from England, and is very destructive. It is stated that excellent pasture was in three years destroyed by this weed, which absolutely displaced every other plant on the ground. It grows in every kind of soil, and is said even to drive out the white clover, which is usually so powerful in taking possession of the soil.

In Australia another composite plant, called there the Cape-weed , did much damage, and was noticed by Baron Von Hugel in 1833 as "an unexterminable weed"; but, after forty years' occupation, it was found to give way to the dense herbage formed by lucerne and choice grasses.

The not uncommon circumstance of slow-breeding animals being very numerous, shows that it is usually the amount of destruction which an animal or plant is exposed to, not its rapid multiplication, that determines its numbers in any country. The passenger-pigeon is, or rather was, excessively abundant in a certain area in North America, and its enormous migrating flocks darkening the sky for hours have often been described; yet this bird lays only two eggs. The fulmar petrel exists in myriads at St. Kilda and other haunts of the species, yet it lays only one egg. On the other hand the great shrike, the tree-creeper, the nut-hatch, the nut-cracker, the hoopoe, and many other birds, lay from four to six or seven eggs, and yet are never abundant. So in plants, the abundance of a species bears little or no relation to its seed-producing power. Some of the grasses and sedges, the wild hyacinth, and many buttercups occur in immense profusion over extensive areas, although each plant produces comparatively few seeds; while several species of bell-flowers, gentians, pinks, and mulleins, and even some of the composite, which produce an abundance of minute seeds, many of which are easily scattered by the wind, are yet rare species that never spread beyond a very limited area.

The above-mentioned passenger-pigeon affords such an excellent example of an enormous bird-population kept up by a comparatively slow rate of increase, and in spite of its complete helplessness and the great destruction which it suffers from its numerous enemies, that the following account of one of its breeding-places and migrations by the celebrated American naturalist, Alexander Wilson, will be read with interest:--

"Not far from Shelbyville, in the State of Kentucky, about five years ago, there was one of these breeding-places, which stretched through the woods in nearly a north and south direction, was several miles in breadth, and was said to be upwards of 40 miles in extent. In this tract almost every tree was furnished with nests wherever the branches could accommodate them. The pigeons made their first appearance there about the 10th of April, and left it altogether with their young before the 25th of May. As soon as the young were fully grown and before they left the nests, numerous parties of the inhabitants from all parts of the adjacent country came with waggons, axes, beds, cooking utensils, many of them accompanied by the greater part of their families, and encamped for several days at this immense nursery. Several of them informed me that the noise was so great as to terrify their horses, and that it was difficult for one person to hear another without bawling in his ear. The ground was strewed with broken limbs of trees, eggs, and young squab pigeons, which had been precipitated from above, and on which herds of hogs were fattening. Hawks, buzzards, and eagles were sailing about in great numbers, and seizing the squabs from the nests at pleasure; while, from 20 feet upwards to the top of the trees, the view through the woods presented a perpetual tumult of crowding and fluttering multitudes of pigeons, their wings roaring like thunder, mingled with the frequent crash of falling timber; for now the axemen were at work cutting down those trees that seemed most crowded with nests, and contrived to fell them in such a manner, that in their descent they might bring down several others; by which means the falling of one large tree sometimes produced 200 squabs little inferior in size to the old birds, and almost one heap of fat. On some single trees upwards of a hundred nests were found, each containing one squab only; a circumstance in the history of the bird not generally known to naturalists. It was dangerous to walk under these flying and fluttering millions, from the frequent fall of large branches, broken down by the weight of the multitudes above, and which in their descent often destroyed numbers of the birds themselves; while the clothes of those engaged in traversing the woods were completely covered with the excrements of the pigeons.

"These circumstances were related to me by many of the most respectable part of the community in that quarter, and were confirmed in part by what I myself witnessed. I passed for several miles through this same breeding-place, where every tree was spotted with nests, the remains of those above described. In many instances I counted upwards of ninety nests on a single tree; but the pigeons had abandoned this place for another, 60 or 80 miles off, towards Green River, where they were said at that time to be equally numerous. From the great numbers that were constantly passing over our heads to or from that quarter, I had no doubt of the truth of this statement. The mast had been chiefly consumed in Kentucky; and the pigeons, every morning a little before sunrise, set out for the Indiana territory, the nearest part of which was about sixty miles distant. Many of these returned before ten o'clock, and the great body generally appeared on their return a little after noon. I had left the public road to visit the remains of the breeding-place near Shelbyville, and was traversing the woods with my gun, on my way to Frankfort, when about ten o'clock the pigeons which I had observed flying the greater part of the morning northerly, began to return in such immense numbers as I never before had witnessed. Coming to an opening by the side of a creek, where I had a more uninterrupted view, I was astonished at their appearance: they were flying with great steadiness and rapidity, at a height beyond gunshot, in several strata deep, and so close together that, could shot have reached them, one discharge could not have failed to bring down several individuals. From right to left, as far as the eye could reach, the breadth of this vast procession extended, seeming everywhere equally crowded. Curious to determine how long this appearance would continue, I took out my watch to note the time, and sat down to observe them. It was then half-past one; I sat for more than an hour, but instead of a diminution of this prodigious procession, it seemed rather to increase, both in numbers and rapidity; and anxious to reach Frankfort before night, I rose and went on. About four o'clock in the afternoon I crossed Kentucky River, at the town of Frankfort, at which time the living torrent above my head seemed as numerous and as extensive as ever. Long after this I observed them in large bodies that continued to pass for six or eight minutes, and these again were followed by other detached bodies, all moving in the same south-east direction, till after six o'clock in the evening. The great breadth of front which this mighty multitude preserved would seem to intimate a corresponding breadth of their breeding-place, which, by several gentlemen who had lately passed through part of it, was stated to me at several miles."

From these various observations, Wilson calculated that the number of birds contained in the mass of pigeons which he saw on this occasion was at least two thousand millions, while this was only one of many similar aggregations known to exist in various parts of the United States. The picture here given of these defenceless birds, and their still more defenceless young, exposed to the attacks of numerous rapacious enemies, brings vividly before us one of the phases of the unceasing struggle for existence ever going on; but when we consider the slow rate of increase of these birds, and the enormous population they are nevertheless able to maintain, we must be convinced that in the case of the majority of birds which multiply far more rapidly, and yet are never able to attain such numbers, the struggle against their numerous enemies and against the adverse forces of nature must be even more severe or more continuous.

The struggle we have hitherto been considering has been mainly that between an animal or plant and its direct enemies, whether these enemies are other animals which devour it, or the forces of nature which destroy it. But there is another kind of struggle often going on at the same time between closely related species, which almost always terminates in the destruction of one of them. As an example of what is meant, Darwin states that the recent increase of the missel-thrush in parts of Scotland has caused the decrease of the song-thrush. The black rat was the common rat of Europe till, in the beginning of the eighteenth century, the large brown rat appeared on the Lower Volga, and thence spread more or less rapidly till it overran all Europe, and generally drove out the black rat, which in most parts is now comparatively rare or quite extinct. This invading rat has now been carried by commerce all over the world, and in New Zealand has completely extirpated a native rat, which the Maoris allege they brought with them from their home in the Pacific; and in the same country a native fly is being supplanted by the European house-fly. In Russia the small Asiatic cockroach has driven away a larger native species; and in Australia the imported hive-bee is exterminating the small stingless native bee.

The reason why this kind of struggle goes on is apparent if we consider that the allied species fill nearly the same place in the economy of nature. They require nearly the same kind of food, are exposed to the same enemies and the same dangers. Hence, if one has ever so slight an advantage over the other in procuring food or in avoiding danger, in its rapidity of multiplication or its tenacity of life, it will increase more rapidly, and by that very fact will cause the other to decrease and often become altogether extinct. In some cases, no doubt, there is actual war between the two, the stronger killing the weaker; but this is by no means necessary, and there may be cases in which the weaker species, physically, may prevail, by its power of more rapid multiplication, its better withstanding vicissitudes of climates, or its greater cunning in escaping the attacks of the common enemies. The same principle is seen at work in the fact that certain mountain varieties of sheep will starve out other mountain varieties, so that the two cannot be kept together. In plants the same thing occurs. If several distinct varieties of wheat are sown together, and the mixed seed resown, some of the varieties which best suit the soil and climate, or are naturally the most fertile, will beat the others and so yield more seed, and will consequently in a few years supplant the other varieties.

As an effect of this principle, we seldom find closely allied species of animals or plants living together, but often in distinct though adjacent districts where the conditions of life are somewhat different. Thus we may find cowslips growing in a meadow, and primroses in an adjoining wood, each in abundance, but not often intermingled. And for the same reason the old turf of a pasture or heath consists of a great variety of plants matted together, so much so that in a patch little more than a yard square Mr. Darwin found twenty distinct species, belonging to eighteen distinct genera and to eight natural orders, thus showing their extreme diversity of organisation. For the same reason a number of distinct grasses and clovers are sown in order to make a good lawn instead of any one species; and the quantity of hay produced has been found to be greater from a variety of very distinct grasses than from any one species of grass.

It may be thought that forests are an exception to this rule, since in the north-temperate and arctic regions we find extensive forests of pines or of oaks. But these are, after all, exceptional, and characterise those regions only where the climate is little favourable to forest vegetation. In the tropical and all the warm temperate parts of the earth, where there is a sufficient supply of moisture, the forests present the same variety of species as does the turf of our old pastures; and in the equatorial virgin forests there is so great a variety of forms, and they are so thoroughly intermingled, that the traveller often finds it difficult to discover a second specimen of any particular species which he has noticed. Even the forests of the temperate zones, in all favourable situations, exhibit a considerable variety of trees of distinct genera and families, and it is only when we approach the outskirts of forest vegetation, where either drought or winds or the severity of the winter is adverse to the existence of most trees, that we find extensive tracts monopolised by one or two species. Even Canada has more than sixty different forest trees and the Eastern United States a hundred and fifty; Europe is rather poor, containing about eighty trees only; while the forests of Eastern Asia, Japan, and Manchuria are exceedingly rich, about a hundred and seventy species being already known. And in all these countries the trees grow intermingled, so that in every extensive forest we have a considerable variety, as may be seen in the few remnants of our primitive woods in some parts of Epping Forest and the New Forest.

Our exposition of the phenomena presented by the struggle for existence may be fitly concluded by a few remarks on its ethical aspect. Now that the war of nature is better known, it has been dwelt upon by many writers as presenting so vast an amount of cruelty and pain as to be revolting to our instincts of humanity, while it has proved a stumbling-block in the way of those who would fain believe in an all-wise and benevolent ruler of the universe. Thus, a brilliant writer says: "Pain, grief, disease, and death, are these the inventions of a loving God? That no animal shall rise to excellence except by being fatal to the life of others, is this the law of a kind Creator? It is useless to say that pain has its benevolence, that massacre has its mercy. Why is it so ordained that bad should be the raw material of good? Pain is not the less pain because it is useful; murder is not less murder because it is conducive to development. Here is blood upon the hand still, and all the perfumes of Arabia will not sweeten it."

Even so thoughtful a writer as Professor Huxley adopts similar views. In a recent article on "The Struggle for Existence" he speaks of the myriads of generations of herbivorous animals which "have been tormented and devoured by carnivores"; of the carnivores and herbivores alike "subject to all the miseries incidental to old age, disease, and over-multiplication"; and of the "more or less enduring suffering," which is the meed of both vanquished and victor. And he concludes that, since thousands of times a minute, were our ears sharp enough, we should hear sighs and groans of pain like those heard by Dante at the gate of hell, the world cannot be governed by what we call benevolence.

Now there is, I think, good reason to believe that all this is greatly exaggerated; that the supposed "torments" and "miseries" of animals have little real existence, but are the reflection of the imagined sensations of cultivated men and women in similar circumstances; and that the amount of actual suffering caused by the struggle for existence among animals is altogether insignificant. Let us, therefore, endeavour to ascertain what are the real facts on which these tremendous accusations are founded.

This absence of pain is not peculiar to those seized by wild beasts, but is equally produced by any accident which causes a general shock to the system. Mr. Whymper describes an accident to himself during one of his preliminary explorations of the Matterhorn, when he fell several hundred feet, bounding from rock to rock, till fortunately embedded in a snow-drift near the edge of a tremendous precipice. He declares that while falling and feeling blow after blow, he neither lost consciousness nor suffered pain, merely thinking, calmly, that a few more blows would finish him. We have therefore a right to conclude, that when death follows soon after any great shock it is as easy and painless a death as possible; and this is certainly what happens when an animal is seized by a beast of prey. For the enemy is one which hunts for food, not for pleasure or excitement; and it is doubtful whether any carnivorous animal in a state of nature begins to seek after prey till driven to do so by hunger. When an animal is caught, therefore, it is very soon devoured, and thus the first shock is followed by an almost painless death. Neither do those which die of cold or hunger suffer much. Cold is generally severest at night and has a tendency to produce sleep and painless extinction. Hunger, on the other hand, is hardly felt during periods of excitement, and when food is scarce the excitement of seeking for it is at its greatest. It is probable, also, that when hunger presses, most animals will devour anything to stay their hunger, and will die of gradual exhaustion and weakness not necessarily painful, if they do not fall an earlier prey to some enemy or to cold.

Now let us consider what are the enjoyments of the lives of most animals. As a rule they come into existence at a time of year when food is most plentiful and the climate most suitable, that is in the spring of the temperate zone and at the commencement of the dry season in the tropics. They grow vigorously, being supplied with abundance of food; and when they reach maturity their lives are a continual round of healthy excitement and exercise, alternating with complete repose. The daily search for the daily food employs all their faculties and exercises every organ of their bodies, while this exercise leads to the satisfaction of all their physical needs. In our own case, we can give no more perfect definition of happiness, than this exercise and this satisfaction; and we must therefore conclude that animals, as a rule, enjoy all the happiness of which they are capable. And this normal state of happiness is not alloyed, as with us, by long periods--whole lives often--of poverty or ill-health, and of the unsatisfied longing for pleasures which others enjoy but to which we cannot attain. Illness, and what answers to poverty in animals--continued hunger--are quickly followed by unanticipated and almost painless extinction. Where we err is, in giving to animals feelings and emotions which they do not possess. To us the very sight of blood and of torn or mangled limbs is painful, while the idea of the suffering implied by it is heartrending. We have a horror of all violent and sudden death, because we think of the life full of promise cut short, of hopes and expectations unfulfilled, and of the grief of mourning relatives. But all this is quite out of place in the case of animals, for whom a violent and a sudden death is in every way the best. Thus the poet's picture of

"Nature red in tooth and claw With ravine"

is a picture the evil of which is read into it by our imaginations, the reality being made up of full and happy lives, usually terminated by the quickest and least painful of deaths.

On the whole, then, we conclude that the popular idea of the struggle for existence entailing misery and pain on the animal world is the very reverse of the truth. What it really brings about, is, the maximum of life and of the enjoyment of life with the minimum of suffering and pain. Given the necessity of death and reproduction--and without these there could have been no progressive development of the organic world,--and it is difficult even to imagine a system by which a greater balance of happiness could have been secured. And this view was evidently that of Darwin himself, who thus concludes his chapter on the struggle for existence: "When we reflect on this struggle, we may console ourselves with the full belief that the war of nature is not incessant, that no fear is felt, that death is generally prompt, and that the vigorous, the healthy, and the happy survive and multiply."

FOOTNOTES:

THE VARIABILITY OF SPECIES IN A STATE OF NATURE

Importance of variability--Popular ideas regarding it--Variability of the lower animals--The variability of insects--Variation among lizards--Variation among birds--Diagrams of bird-variation--Number of varying individuals--Variation in the mammalia--Variation in internal organs--Variations in the skull--Variations in the habits of Animals--The Variability of plants--Species which vary little--Concluding remarks.

It is very commonly objected that the widespread and constant variability which is admitted to be a characteristic of domesticated animals and cultivated plants is largely due to the unnatural conditions of their existence, and that we have no proof of any corresponding amount of variation occurring in a state of nature. Wild animals and plants, it is said, are usually stable, and when variations occur these are alleged to be small in amount and to affect superficial characters only; or if larger and more important, to occur so rarely as not to afford any aid in the supposed formation of new species.

Coming now to a higher group--the Sea-Anemones--Mr. P.H. Gosse and other writers on these creatures often refer to variations in size, in the thickness and length of the tentacles, the form of the disc and of the mouth, and the character of surface of the column, while the colour varies enormously in a great number of the species. Similar variations occur in all the various groups of marine invertebrata, and in the great sub-kingdom of the mollusca they are especially numerous. Thus, Dr. S.P. Woodward states that many present a most perplexing amount of variation, resulting from supply of food, variety of depth and of saltness of the water; but we know that many variations are quite independent of such causes, and we will now consider a few cases among the land-mollusca in which they have been more carefully studied.

In most land-shells there is a considerable amount of variation in colour, markings, size, form, and texture or striation of the surface, even in specimens collected in the same locality. Thus, a French author has enumerated no less than 198 varieties of the common wood-snail , while of the equally common garden-snail ninety varieties have been described. Fresh-water shells are also subject to great variation, so that there is much uncertainty as to the number of species; and variations are especially frequent in the Planorbidae, which exhibit many eccentric deviations from the usual form of the species--deviations which must often affect the form of the living animal. In Mr. Ingersoll's Report on the Recent Mollusca of Colorado many of these extraordinary variations are referred to, and it is stated that a shell abundant in some small ponds and lakes, had scarcely two specimens alike, and many of them closely resembled other and altogether distinct species.

It is, however, among the Lepidoptera that the most numerous cases of variation have been observed, and every good collection of these insects affords striking examples. I will first adduce the testimony of Mr. Bates, who speaks of the butterflies of the Amazon valley exhibiting innumerable local varieties or races, while some species showed great individual variability. Of the beautiful Mechanitis Polymnia he says, that at Ega on the Upper Amazons, "it varies not only in general colour and pattern, but also very considerably in the shape of the wings, especially in the male sex." Again, at St. Paulo, Ithomia Orolina exhibits four distinct varieties, all occurring together, and these differ not only in colour but in form, one variety being described as having the fore wings much elongated in the male, while another is much larger and has "the hind wings in the male different in shape." Of Heliconius Numata Mr. Bates says: "This species is so variable that it is difficult to find two examples exactly alike," while "it varies in structure as well as in colours. The wings are sometimes broader, sometimes narrower; and their edges are simple in some examples and festooned in others." Of another species of the same genus, H. melpomene, ten distinct varieties are described all more or less connected by intermediate forms, and four of these varieties were obtained at one locality, Serpa on the north bank of the Amazon. Ceratina Ninonia is another of these very unstable species exhibiting many local varieties which are, however, incomplete and connected by intermediate forms; while the several species of the genus Lycorea all vary to such an extent as almost to link them together, so that Mr. Bates thinks they might all fairly be considered as varieties of one species only.

Turning to the Eastern Hemisphere we have in Papilio Severus a species which exhibits a large amount of simple variation, in the presence or absence of a pale patch on the upper wings, in the brown submarginal marks on the lower wings, in the form and extent of the yellow band, and in the size of the specimens. The most extreme forms, as well as the intermediate ones, are often found in one locality and in company with each other. A small butterfly ranges over the whole of the Indian and Malayan regions to Australia, and everywhere exhibits great variations, many of which have been described as distinct species; but a gentleman in Australia bred two of these distinct forms , with several intermediates, from one batch of caterpillars found feeding together on the same plant. It is therefore very probable that a considerable number of supposed distinct species are only individual varieties.

Passing on from the lower animals to the vertebrata, we find more abundant and more definite evidence as to the extent and amount of individual variation. I will first give a case among the Reptilia from some of Mr. Darwin's unpublished MSS., which have been kindly lent me by Mr. Francis Darwin.

"M. Milne Edwards has given a curious table of measurements of fourteen specimens of Lacerta muralis; and, taking the length of the head as a standard, he finds the neck, trunk, tail, front and hind legs, colour, and femoral pores, all varying wonderfully; and so it is more or less with other species. So apparently trifling a character as the scales on the head affording almost the only constant characters."

As the table of measurements above referred to would give no clear conception of the nature and amount of the variation without a laborious study and comparison of the figures, I have endeavoured to find a method of presenting the facts to the eye, so that they may be easily grasped and appreciated. In the diagram opposite, the comparative variations of the different organs of this species are given by means of variously bent lines. The head is represented by a straight line because it presented no variation. The body is next given, the specimens being arranged in the order of their size from No. 1, the smallest, to No. 14, the largest, the actual lengths being laid down from a base line at a suitable distance below, in this case two inches below the centre, the mean length of the body of the fourteen specimens being two inches. The respective lengths of the neck, legs, and toe of each specimen are then laid down in the same manner at convenient distances apart for comparison; and we see that their variations bear no definite relation to those of the body, and not much to those of each other. With the exception of No. 5, in which all the parts agree in being large, there is a marked independence of each part, shown by the lines often curving in opposite directions; which proves that in those specimens one part is large while the other is small. The actual amount of the variation is very great, ranging from one-sixth of the mean length in the neck to considerably more than a fourth in the hind leg, and this among only fourteen examples which happen to be in a particular museum.

Here we have five very distinct proportionate lengths of the wing feathers, any one of which is often thought sufficient to characterise a distinct species of bird; and though this is rather an extreme case, Mr. Allen assures us that "the comparison, extended in the table to only a few species, has been carried to scores of others with similar results."

Along with this variation in size and proportions there occurs a large amount of variation in colour and markings. "The difference in intensity of colour between the extremes of a series of fifty or one hundred specimens of any species, collected at a single locality, and nearly at the same season of the year, is often as great as occurs between truly distinct species." But there is also a great amount of individual variability in the markings of the same species. Birds having the plumage varied with streaks and spots differ exceedingly in different individuals of the same species in respect to the size, shape, and number of these marks, and in the general aspect of the plumage resulting from such variations. "In the common song sparrow , the fox-coloured sparrow , the swamp sparrow , the black and white creeper , the water-wagtail , in Turdus fuscescens and its allies, the difference in the size of the streaks is often very considerable. In the song sparrow they vary to such an extent that in some cases they are reduced to narrow lines; in others so enlarged as to cover the greater part of the breast and sides of the body, sometimes uniting on the middle of the breast into a nearly continuous patch."

Mr. Allen then goes on to particularise several species in which such variations occur, giving cases in which two specimens taken at the same place on the same day exhibited the two extremes of coloration. Another set of variations is thus described: "The white markings so common on the wings and tails of birds, as the bars formed by the white tips of the greater wing-coverts, the white patch occasionally present at the base of the primary quills, or the white band crossing them, and the white patch near the end of the outer tail-feathers are also extremely liable to variation in respect to their extent and the number of feathers to which, in the same species, these markings extend." It is to be especially noted that all these varieties are distinct from those which depend on season, on age, or on sex, and that they are such as have in many other species been considered to be of specific value.

The first of these is intended, mainly, to show the actual amount of the variation, as it gives the true length of the wing and tail in the extreme cases among thirty specimens of each of three species. The shaded portion shows the minimum length, the unshaded portion the additional length in the maximum. The point to be specially noted here is, that in each of these common species there is about the same amount of variation, and that it is so great as to be obvious at a glance.

There is here no question of "minute" or "infinitesimal" variation, which many people suppose to be the only kind of variation that exists. It cannot even be called small; yet from all the evidence we now possess it seems to be the amount which characterises most of the common species of birds.

It may be said, however, that these are the extreme variations, and only occur in one or two individuals, while the great majority exhibit little or no difference. Other diagrams will show that this is not the case; but even if it were so, it would be no objection at all, because these are the extremes among thirty specimens only. We may safely assume that these thirty specimens, taken by chance, are not, in the case of all these species, exceptional lots, and therefore we might expect at least two similarly varying specimens in each additional thirty. But the number of individuals, even in a very rare species, is probably thirty thousand or more, and in a common species thirty, or even three hundred, millions. Even one individual in each thirty, varying to the amount shown in the diagram, would give at least a million in the total population of any common bird, and among this million many would vary much more than the extreme among thirty only. We should thus have a vast body of individuals varying to a large extent in the length of the wings and tail, and offering ample material for the modification of these organs by natural selection. We will now proceed to show that other parts of the body vary, simultaneously, but independently, to an equal amount.

The first bird taken is the common Bob-o-link or Rice-bird , and the Diagram, Fig. 4, exhibits the variations of seven important characters in twenty male adult specimens. These characters are--the lengths of the body, wing, tail, tarsus, middle toe, outer toe, and hind toe, being as many as can be conveniently exhibited in one diagram. The length of the body is not given by Mr. Allen, but as it forms a convenient standard of comparison, it has been obtained by deducting the length of the tail from the total length of the birds as given by him. The diagram has been constructed as follows:--The twenty specimens are first arranged in a series according to the body-lengths , from the shortest to the longest, and the same number of vertical lines are drawn, numbered from one to twenty. In this case the body-length is measured from the lower line of the diagram, so that the actual length of the bird is exhibited as well as the actual variations of length. These can be well estimated by means of the horizontal line drawn at the mean between the two extremes, and it will be seen that one-fifth of the total number of specimens taken on either side exhibits a very large amount of variation, which would of course be very much greater if a hundred or more specimens were compared. The lengths of the wing, tail, and other parts are then laid down, and the diagram thus exhibits at a glance the comparative variation of these parts in every specimen as well as the actual amount of variation in the twenty specimens; and we are thus enabled to arrive at some important conclusions.

We note, first, that the variations of none of the parts follow the variations of the body, but are sometimes almost in an opposite direction. Thus the longest wing corresponds to a rather small body, the longest tail to a medium body, while the longest leg and toes belong to only a moderately large body. Again, even related parts do not constantly vary together but present many instances of independent variation, as shown by the want of parallelism in their respective variation-lines. In No. 5 the wing is very long, the tail moderately so; while in No. 6 the wing is much shorter while the tail is considerably longer. The tarsus presents comparatively little variation; and although the three toes may be said to vary in general together, there are many divergencies; thus, in passing from No. 9 to No. 10, the outer toe becomes longer, while the hind toe becomes considerably shorter; while in Nos. 3 and 4 the middle toe varies in an opposite way to the outer and the hind toes.

In the next diagram we have the variations in forty males of the Red-winged Blackbird , and here we see the same general features. One-fifth of the whole number of specimens offer a large amount of variation either below or above the mean; while the wings, tail, and head vary quite independently of the body. The wing and tail too, though showing some amount of correlated variation, yet in no less than nine cases vary in opposite directions as compared with the preceding species.

The next diagram , showing the variations of thirty-one males of the Cardinal bird , exhibits these features much more strongly. The amount of variation in proportion to the size of the bird is very much greater; while the variations of the wing and tail not only have no correspondence with that of the body but very little with each other. In no less than twelve or thirteen instances they vary in opposite directions, while even where they correspond in direction the amount of the variation is often very disproportionate.

As the proportions of the tarsi and toes of birds have great influence on their mode of life and habits and are often used as specific or even generic characters, I have prepared a diagram to show the variation in these parts only, among twenty specimens of each of four species of birds, four or five of the most variable alone being given. The extreme divergence of each of the lines in a vertical direction shows the actual amount of variation; and if we consider the small length of the toes of these small birds, averaging about three-quarters of an inch, we shall see that the variation is really very large; while the diverging curves and angles show that each part varies, to a great extent, independently. It is evident that if we compared some thousands of individuals instead of only twenty, we should have an amount of independent variation occurring each year which would enable almost any modification of these important organs to be rapidly effected.

In order to meet the objection that the large amount of variability here shown depends chiefly on the observations of one person and on the birds of a single country, I have examined Professor Schlegel's Catalogue of the Birds in the Leyden Museum, in which he usually gives the range of variation of the specimens in the museum as regards some of their more important dimensions. These fully support the statement of Mr. Allen, since they show an equal amount of variability when the numbers compared are sufficient, which, however, is not often the case. The accompanying diagram exhibits the actual differences of size in five organs which occur in five species taken almost at random from this catalogue. Here, again, we perceive that the variation is decidedly large, even among a very small number of specimens; while the facts all show that there is no ground whatever for the common assumption that natural species consist of individuals which are nearly all alike, or that the variations which occur are "infinitesimal" or even "small."

The notion that variation is a comparatively exceptional phenomenon, and that in any case considerable variations occur very rarely in proportion to the number of individuals which do not vary, is so deeply rooted that it is necessary to show by every possible method of illustration how completely opposed it is to the facts of nature. I have therefore prepared some diagrams in which each of the individual birds measured is represented by a spot, placed at a proportionate distance, right and left, from the median line accordingly as it varies in excess or defect of the mean length as regards the particular part compared. As the object in this set of diagrams is to show the number of individuals which vary considerably in proportion to those which vary little or not at all, the scale has been enlarged in order to allow room for placing the spots without overlapping each other.

Add to tbrJar First Page Next Page Prev Page

Back to top Use Dark Theme