|
Read Ebook: Occult Chemistry: Clairvoyant Observations on the Chemical Elements by Besant Annie Leadbeater C W Charles Webster Sinnett A P Alfred Percy Editor
Font size: Background color: Text color: Add to tbrJar First Page Next Page Prev PageEbook has 220 lines and 39179 words, and 5 pagesThus we have a regular sequence of the platonic solids, and the question suggests itself, will further evolution develop elements shaped to the dodecahedron and the icosahedron? We now pass from the consideration of the outer forms of the chemical elements to a study of their internal structure, the arrangement within the element of more or less complicated groups--proto-elements--capable of separate, independent existence; these, once more, may be dissociated into yet simpler groups--hyper-meta-proto-elements--equally capable of separate, independent existence, and resolvable into single ultimate physical atoms, the irreducible substratum of the physical world . We shall have to study the general internal structure, and then the breaking up of each element, and the admirable diagrams, patiently worked out by Mr. Jinar?jad?sa, will make the study comparatively easy to carry on. The diagrams, of course, can only give a very general idea of the facts they represent; they give groupings and show relations, but much effort of the imagination is needed to transform the two-dimensional diagram into the three-dimensional object. The wise student will try to visualize the figure from the diagram. Thus the two triangles of hydrogen are not in one plane; the circles are spheres, and the atoms within them, while preserving to each other their relative positions, are in swift movement in three-dimensional space. Where five atoms are seen, as in bromine and iodine, they are generally arranged with the central atom above the four, and their motion indicates lines which erect four plane triangles--meeting at their apices--on a square base, forming a square-based four-sided pyramid. Each dot represents a single ultimate atom. The enclosing lines indicate the impression of form made on the observer, and the groupings of the atoms; the groups will divide along these lines, when the element is broken up, so that the lines have significance, but they do not exist as stable walls or enclosing films, but rather mark limits, not lines, of vibrations. It should be noted that it is not possible to show five of the prisms in the five intersecting tetrahedra of prisms, and 30 atoms must, therefore, be added in counting. The diagrams are not drawn to scale, as such drawing would be impossible; the dot representing the atom is enormously too large compared with the enclosures, which are absurdly too small; a scale drawing would mean an almost invisible dot on a sheet of many yards square. "When binary compounds, or compounds of two elements, are decomposed by an electric current, the two elements make their appearance at opposite poles. These elements which are disengaged at the negative pole are termed electro-positive or positive or basylous elements, while those disengaged at the positive pole are termed electro-negative or negative or chlorous elements. But the difference between these two classes of elements is one of degree only, and they gradually merge into each other; moreover the electric relations of elements are not absolute, but vary according to the state of combination in which they exist, so that it is just as impossible to divide the elements into two classes according to this property as it is to separate them into two distinct classes of metals and non-metals." According to the lemniscate arrangement, we should commence with hydrogen as the head of the first negative group, but as it differs wholly from those placed with it, it is better to take it by itself. Hydrogen is the lightest of the known elements, and is therefore taken as 1 in ordinary chemistry, and all atomic weights are multiples of this. We take it as 18, because it contains eighteen ultimate atoms, the smallest number we have found in a chemical element. So our "number-weights" are obtained by dividing the total number of atoms in an element by 18 . HYDROGEN .--Hydrogen not only stands apart from its reputed group by not having the characteristic dumb-bell shape, well shown in sodium , but it also stands apart in being positive, serving as a base, not as a chlorous, or acid, radical, thus "playing the part of a metal," as in hydrogen chloride , hydrogen sulphate , etc. It is most curious that hydrogen, oxygen and nitrogen, the most widely spread gases, all differ fundamentally in form from the groups they reputedly head. Hydrogen was the first chemical element examined by us, nearly thirteen years ago, and I reproduce here the substance of what I wrote in November, 1895, for we have nothing to add to nor amend in it. Hydrogen consists of six small bodies, contained in an egg-like form . The six little bodies are arranged in two sets of three, forming two triangles which are not interchangeable, but are related to each other as object and image. The six bodies are not all alike; they each contain three ultimate physical atoms, but in four of the bodies the three atoms are arranged in a triangle, and in the remaining two in a line. I a.--This group consists of Cl, Br, and I ; they are monads, diamagnetic and negative. CHLORINE .--As already said, the general form is that of the dumb-bell, the lower and upper parts each consisting of twelve funnels, six sloping upwards and six downwards, the funnels radiating outwards from a central globe, and these two parts being united by a connecting rod . The funnel is a somewhat complicated structure, of the same type as that in sodium , the difference consisting in the addition of one more globe, containing nine additional atoms. The central globe is the same as in sodium, but the connecting rod differs. We have here a regular arrangement of five globes, containing three, four, five, four, three atoms respectively, whereas sodium has only three bodies, containing four, six, four. But copper and silver, its congeners, have their connecting rods of exactly the same pattern as the chlorine rod, and the chlorine rod reappears in both bromine and iodine. These close similarities point to some real relation between these groups of elements, which are placed, in the lemniscates, equi-distant from the central line, though one is on the swing which is going towards that line and the other is on the swing away from it. MAGNESIUM introduces us to a new arrangement: each group of three ovoids forms a ring, and the three rings are within a funnel; at first glance, there are three bodies in the funnel; on examination each of these is seen to consist of three, with other bodies, spheres, again within them. Apart from this, the composition is simple enough, all the ovoids being alike, and composed of a triplet, a septet and a duad. MAGNESIUM: 4 funnels of 108 atoms 432 Atomic weight 24.18 Number weight 432/18 24.00 ZINC also brings a new device: the funnel is of the same type as that of magnesium, while septets are substituted for the triplets, and 36 additional atoms are thus slipped in. Then we see four spikes, alternating with the funnels and pointing to the angles, each adding 144 atoms to the total. The spikes show the ten-atomed triangle, already met with in other metals, three very regular pillars, each with six spheres, containing two, three, four, four, three, two atoms, respectively. The supporting spheres are on the model of the central globe, but contain more atoms. Funnels and spikes alike radiate from a simple central globe, in which five contained spheres are arranged crosswise, preparing for the fully developed cross of cadmium. The ends of the cross touch the bottoms of the funnels. SULPHUR , which, like magnesium, has no central globe, and consists simply of the zinc funnels, much less compressed than zinc but the same in composition. SULPHUR: 4 funnels of 144 atoms 576 Atomic weight 31.82 Number weight 576/18 32.00 SELENIUM is distinguished by the exquisite peculiarity, already noticed, of a quivering star, floating across the mouth of each funnel, and dancing violently when a ray of light falls upon it. It is known that the conductivity of selenium varies with the intensity of the light falling upon it, and it may be that the star is in some way connected with its conductivity. It will be seen that the star is a very complicated body, and in each of its six points the two five-atomed spheres revolve round the seven-atomed cone. The bodies in the funnels resemble those in magnesium, but a reversed image of the top one is interposed between itself and the small duad, and each pair has its own enclosure. The central globe is the same as that of zinc. We must now consider the ways in which the members of the tetrahedral groups break up, and as we proceed with this study we shall find how continual are the repetitions, and how Nature, with a limited number of fundamental methods, creates by varied combinations her infinite variety of forms. BERYLLIUM . CALCIUM . The funnels, as usual, assume a spherical form on the proto level, and show, in each case, three spheres containing ovoids. These spheres, still on the proto level, break free from their containing funnel, as in the case of gold , twelve bodies being thus liberated, while the central globe breaks up into eight segments, each of which becomes globular, and contains within it a "cigar" and a somewhat heart-shaped body. Four spheres, each containing seven ten-atomed ovoids, are identical with those in beryllium, and can be followed in its diagram. Eight spheres, each containing five nine-atomed ovoids of a different type, set free, on the meta level, eighty duads--forty positive and forty negative--and forty quintets, which are identical with those in chlorine. On the hyper level, the duads become single atoms, within a sphere, and the central atom from the quintet is also set free, one hundred and twenty in all. The remaining four atoms of the quintet divide into two duads. The central globe, dividing into eight, becomes eight six-atomed spheres on the meta, the "cigar" behaving as usual, four "cigars" being positive and four negative, and becoming dissociated into triplets; the four atoms within the heart-shaped body appear as a tetrahedron, remain together on the meta level, and break up into duads on the hyper. STRONTIUM . OXYGEN . The disintegration of oxygen as given in 1895 may be repeated here, and the better presentation given on p. 54 renders it easier to follow the process. On the proto level the two "snakes" divide; the brilliant disks are seven-atomed, but are differently arranged, the positive snake having the atoms arranged as in the iodine ovoids, whereas the negative snake has them arranged as in a capital H. The snakes show the same extraordinary activity on the proto level as on the gaseous, twisting and writhing, darting and coiling. The body of the snake is of two-atomed beads, positive and negative. On the meta level the snakes break into ten fragments, each consisting of a disk, with six beads on one side and five on the other, remaining as lively as the original snake. They shiver into their constituent disks, and beads on the hyper level, there yielding the ten disks, five positive and five negative, and the 110 beads, fifty-five positive and fifty-five negative. CHROMIUM . MOLYBDENUM . Molybdenum presents us with only two new forms, and these are merely four-atomed tetrahedra, occurring in pairs as object and image. All the other bodies have already been analysed. II a.--We come now to the second great tetrahedral group, which though very much complicated, is yet, for the most part, a repetition of familiar forms. MAGNESIUM . ZINC . We can leave aside the funnel, for the only difference between it and the magnesium funnel is the substitution of a second septet for the triplet, and the septet is already shown in the magnesium diagram. We have, therefore, only to consider the spikes, pointing to the angles of the enclosing tetrahedron, and the central globe. These are set free on the proto level and the spikes immediately release their contents, yielding thus thirty-two separate bodies. CADMIUM . SULPHUR . Sulphur has nothing new, but shows only the funnels already figured in magnesium, with the substitution of a second septet for the triplet, as in zinc. SELENIUM . The funnel of selenium is a re-arrangement of the twelve-atomed ovoids of magnesium and the ten-atomed ovoids of cadmium. The funnels, on disintegrating, set free twelve groups, each containing nine spheres. On the meta level the ten-atomed bodies are set free, and the twelve-atomed divide into duads and decads, thus yielding seventy-two decads and thirty-six duads; the duads, however, at once recombine into hexads, thus giving only twelve meta elements, or eighty-four in all from the funnels. The central globe holds together on the proto level, but yields five meta elements. The star also at first remains a unit on the proto level, and then shoots off into seven bodies, the centre keeping together, and the six points becoming spheres, within which the two cones, base to base, whirl in the centre, and the globes circle round them. On the meta level all the thirty bodies contained in the star separate from each other, and go on their independent ways. Selenium offers a beautiful example of the combination of simple elements into a most exquisite whole. TELLURIUM . Tellurium very closely resembles cadmium, and they are, therefore placed on the same diagram. The pillars are the same as in chlorine and its congeners, with a duad added at the base. The ten-atomed ovoid is the same as in cadmium and follows the same course in breaking up. It would be interesting to know why this duad remains as a duad in selenium and breaks up into a septad and triad in the other members of the group. It may be due to the greater pressure to which it is subjected in selenium, or there may be some other reason. The cross in tellurium is identical with that in cadmium, except that the centre is seven-atomed instead of four-atomed. We have here four groups to consider, all the members of which are triads, and have six funnels, opening on the six faces of a cube. BORON . We have here the simplest form of the cube; the funnels contain only five bodies--four six-atomed ovoids and one six-atomed "cigar." The central globe has but four five-atomed spheres. It is as simple in relation to its congeners as is beryllium to its group-members. The central globe repeats that of boron, with an additional four-atomed sphere in the middle. The central globe presents us with two tetrahedra, recalling one of the combinations in gold , and differing from that only by the substitution of two quartets for the two triplets in gold. The rest of the funnel is the same. In the central globe both the tetrahedra have "cigars," and a central nine-atomed globe spins round in the centre , seventeen atoms being thus added. ALUMINIUM , the head of the group, is, as usual, simple. There are six similar funnels, each containing eight ovoids, below which is a globe. PHOSPHORUS: Left segment 50 atoms Right segment 43 " -- 93 6 funnels of 93 atoms 558 Atomic weight 30.77 Number weight 558/18 31.00 ARSENIC resembles aluminium in having eight internal sub-divisions in a funnel, and the ovoids which form the top ring are identical, save for a minute difference that in aluminium the ovoids stand the reverse way from those in arsenic. It will be noted that in the former the top and bottom triangles of atoms have the apices upwards, and the middle one has its apex downwards. In arsenic, the top and bottom ones point downwards, and the middle one upwards. Arsenic inserts sixteen spheres between the ovoids and globe shown in aluminium, and thus adds no less than one hundred and forty-four atoms to each funnel. ARSENIC: 6 funnels of 225 atoms 1350 Atomic weight 74.45 Number weight 1350/18 75.00 ANTIMONY is a close copy of indium, and the arrangement of types A and B in the funnels is identical. In the middle rings of both A and B a triplet is substituted for a unit at the centre of the larger globe. In the lowest body of type A the "cigar" has vanished, and is represented by a seven-atomed crystalline form. BORON . The disintegration of boron is very simple: the funnels are set free and assume the spherical form, showing a central "cigar" and four globes each containing two triplets. The central globe is also set free with its four quintets, and breaks at once in two. On the meta level the "cigar" breaks up as usual, and the triplets separate. On the hyper level, the "cigar" follows its usual course, and the triplets become duads and units. The globe forms two quintets on the meta level, and these are resolved into triplets and duads. SCANDIUM . Add to tbrJar First Page Next Page Prev Page |
Terms of Use Stock Market News! © gutenberg.org.in2025 All Rights reserved.