Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: The Number Concept: Its Origin and Development by Conant Levi L Levi Leonard

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 32 lines and 20696 words, and 1 pages

g possible. A little higher in the intellectual scale, among the American Indians, for example, they are employed merely as an artificial aid to what could be done by mental effort alone. Finally, among semi-civilized and civilized peoples, the same processes are retained, and form a part of the daily life of almost every person who has to do with counting, reckoning, or keeping tally in any manner whatever. They are no longer necessary, but they are so convenient and so useful that civilization can never dispense with them. The use of the abacus, in the form of the ordinary numeral frame, has increased greatly within the past few years; and the time may come when the abacus in its proper form will again find in civilized countries a use as common as that of five centuries ago.

In the elaborate calculating machines of the present, such as are used by life insurance actuaries and others having difficult computations to make, we have the extreme of development in the direction of artificial aid to reckoning. But instead of appearing merely as an extraneous aid to a defective intelligence, it now presents itself as a machine so complex that a high degree of intellectual power is required for the mere grasp of its construction and method of working.

NUMBER SYSTEM LIMITS.

Taken as a whole, the Australian and Tasmanian tribes seem to have been distinctly inferior to those of South America in their ability to use and to comprehend numerals. In all but two or three cases the Tasmanians were found to be unable to proceed beyond 2; and as the foregoing examples have indicated, their Australian neighbours were but little better off. In one or two instances we do find Australian numeral scales which reach 10, and perhaps we may safely say 20. One of these is given in full in a subsequent chapter, and its structure gives rise to the suspicion that it was originally as limited as those of kindred tribes, and that it underwent a considerable development after the natives had come in contact with the Europeans. There is good reason to believe that no Australian in his wild state could ever count intelligently to 7.

Aside from the specific examples already given, a considerable number of sweeping generalizations may be made, tending to show how rudimentary the number sense may be in aboriginal life. Scores of the native dialects of Australia and South America have been found containing number systems but little more extensive than those alluded to above. The negro tribes of Africa give the same testimony, as do many of the native races of Central America, Mexico, and the Pacific coast of the United States and Canada, the northern part of Siberia, Greenland, Labrador, and the arctic archipelago. In speaking of the Eskimos of Point Barrow, Murdoch says: "It was not easy to obtain any accurate information about the numeral system of these people, since in ordinary conversation they are not in the habit of specifying any numbers above five." Counting is often carried higher than this among certain of these northern tribes, but, save for occasional examples, it is limited at best. Dr. Franz Boas, who has travelled extensively among the Eskimos, and whose observations are always of the most accurate nature, once told the author that he never met an Eskimo who could count above 15. Their numerals actually do extend much higher; and a stray numeral of Danish origin is now and then met with, showing that the more intelligent among them are able to comprehend numbers of much greater magnitude than this. But as Dr. Boas was engaged in active work among them for three years, we may conclude that the Eskimo has an arithmetic but little more extended than that which sufficed for the Australians and the forest tribes of Brazil. Early Russian explorers among the northern tribes of Siberia noticed the same difficulty in ordinary, every-day reckoning among the natives. At first thought we might, then, state it as a general law that those races which are lowest in the scale of civilization, have the feeblest number sense also; or in other words, the least possible power of grasping the abstract idea of number.

But to this law there are many and important exceptions. The concurrent testimony of explorers seems to be that savage races possess, in the great majority of cases, the ability to count at least as high as 10. This limit is often extended to 20, and not infrequently to 100. Again, we find 1000 as the limit; or perhaps 10,000; and sometimes the savage carries his number system on into the hundreds of thousands or millions. Indeed, the high limit to which some savage races carry their numeration is far more worthy of remark than the entire absence of the number sense exhibited by others of apparently equal intelligence. If the life of any tribe is such as to induce trade and barter with their neighbours, a considerable quickness in reckoning will be developed among them. Otherwise this power will remain dormant because there is but little in the ordinary life of primitive man to call for its exercise.

In giving 1, 2, 3, 5, 10, or any other small number as a system limit, it must not be overlooked that this limit mentioned is in all cases the limit of the spoken numerals at the savage's command. The actual ability to count is almost always, and one is tempted to say always, somewhat greater than their vocabularies would indicate. The Bushman has no number word that will express for him anything higher than 2; but with the assistance of his fingers he gropes his way on as far as 10. The Veddas, the Andamans, the Guachi, the Botocudos, the Eskimos, and the thousand and one other tribes which furnish such scanty numeral systems, almost all proceed with more or less readiness as far as their fingers will carry them. As a matter of fact, this limit is frequently extended to 20; the toes, the fingers of a second man, or a recount of the savage's own fingers, serving as a tale for the second 10. Allusion is again made to this in a later chapter, where the subject of counting on the fingers and toes is examined more in detail.

In saying that a savage can count to 10, to 20, or to 100, but little idea is given of his real mental conception of any except the smallest numbers. Want of familiarity with the use of numbers, and lack of convenient means of comparison, must result in extreme indefiniteness of mental conception and almost entire absence of exactness. The experience of Captain Parry, who found that the Eskimos made mistakes before they reached 7, and of Humboldt, who says that a Chayma might be made to say that his age was either 18 or 60, has been duplicated by all investigators who have had actual experience among savage races. Nor, on the other hand, is the development of a numeral system an infallible index of mental power, or of any real approach toward civilization. A continued use of the trading and bargaining faculties must and does result in a familiarity with numbers sufficient to enable savages to perform unexpected feats in reckoning. Among some of the West African tribes this has actually been found to be the case; and among the Yorubas of Abeokuta the extraordinary saying, "You may seem very clever, but you can't tell nine times nine," shows how surprisingly this faculty has been developed, considering the general condition of savagery in which the tribe lived. There can be no doubt that, in general, the growth of the number sense keeps pace with the growth of the intelligence in other respects. But when it is remembered that the Tonga Islanders have numerals up to 100,000, and the Tembus, the Fingoes, the Pondos, and a dozen other South African tribes go as high as 1,000,000; and that Leigh Hunt never could learn the multiplication table, one must confess that this law occasionally presents to our consideration remarkable exceptions.

THE ORIGIN OF NUMBER WORDS.

The scope of the present work will admit of no more than a hasty examination of numeral forms, in which only actual and well ascertained meanings will be considered. But here we are at the outset confronted with a class of words whose original meanings appear to be entirely lost. They are what may be termed the numerals proper--the native, uncompounded words used to signify number. Such words are the one, two, three, etc., of English; the eins, zwei, drei, etc., of German; words which must at some time, in some prehistoric language, have had definite meanings entirely apart from those which they now convey to our minds. In savage languages it is sometimes possible to detect these meanings, and thus to obtain possession of the clue that leads to the development, in the barbarian's rude mind, of a count scale--a number system. But in languages like those of modern Europe, the pedigree claimed by numerals is so long that, in the successive changes through which they have passed, all trace of their origin seems to have been lost.

More rarely yet are instances met with of languages which make use of subtraction almost as freely as addition, in the composition of numerals. Within the past few years such an instance has been noticed in the case of the Bellacoola language of British Columbia. In their numeral scale 15, "one foot," is followed by 16, "one man less 4"; 17, "one man less 3"; 18, "one man less 2"; 19, "one man less 1"; and 20, one man. Twenty-five is "one man and one hand"; 26, "one man and two hands less 4"; 36, "two men less 4"; and so on. This method of formation prevails throughout the entire numeral scale.

One of the best known and most interesting examples of subtraction as a well-defined principle of formation is found in the Maya scale. Up to 40 no special peculiarity appears; but as the count progresses beyond that point we find a succession of numerals which one is almost tempted to call 60 - 19, 60 - 18, 60 - 17, etc. Literally translated the meanings seem to be 1 to 60, 2 to 60, 3 to 60, etc. The point of reference is 60, and the thought underlying the words may probably be expressed by the paraphrases, "1 on the third score, 2 on the third score, 3 on the third score," etc. Similarly, 61 is 1 on the fourth score, 81 is one on the fifth score, 381 is 1 on the nineteenth score, and so on to 400. At 441 the same formation reappears; and it continues to characterize the system in a regular and consistent manner, no matter how far it is extended.

The Yoruba language of Africa is another example of most lavish use of subtraction; but it here results in a system much less consistent and natural than that just considered. Here we find not only 5, 10, and 20 subtracted from the next higher unit, but also 40, and even 100. For example, 360 is 400 - 40; 460 is 500 - 40; 500 is 600 - 100; 1300 is 1400 - 100, etc. One of the Yoruba units is 200; and all the odd hundreds up to 2000, the next higher unit, are formed by subtracting 100 from the next higher multiple of 200. The system is quite complex, and very artificial; and seems to have been developed by intercourse with traders.

In a few noteworthy instances, the words composing the numeral scale of a language have been carefully investigated and their original meanings accurately determined. The simple structure of many of the rude languages of the world should render this possible in a multitude of cases; but investigators are too often content with the mere numerals themselves, and make no inquiry respecting their meanings. But the following exposition of the Zu?i scale, given by Lieutenant Gushing leaves nothing to be desired:

This finishes the list of original simple numerals, the Zu?i stopping, or "notching off," when he finishes the fingers of one hand. Compounding now begins.

The process of formation indicated in 11 is used in the succeeding numerals up to 19.

The only numerals calling for any special note are those for 11 and 9. For 9 we should naturally expect a word corresponding in structure and meaning to the words for 7 and 8. But instead of the "four brought to and held up with the rest," for which we naturally look, the Zu?i, to show that he has used all of his fingers but one, says "all but all are held up with the rest." To express 11 he cannot use a similar form of composition, since he has already used it in constructing his word for 6, so he says "all the fingers and another over above held."

The one remarkable point to be noted about the Zu?i scale is, after all, the formation of the words for 1 and 2. While the savage almost always counts on his fingers, it does not seem at all certain that these words would necessarily be of finger formation. The savage can always distinguish between one object and two objects, and it is hardly reasonable to believe that any external aid is needed to arrive at a distinct perception of this difference. The numerals for 1 and 2 would be the earliest to be formed in any language, and in most, if not all, cases they would be formed long before the need would be felt for terms to describe any higher number. If this theory be correct, we should expect to find finger names for numerals beginning not lower than 3, and oftener with 5 than with any other number. The highest authority has ventured the assertion that all numeral words have their origin in the names of the fingers; substantially the same conclusion was reached by Professor Pott, of Halle, whose work on numeral nomenclature led him deeply into the study of the origin of these words. But we have abundant evidence at hand to show that, universal as finger counting has been, finger origin for numeral words has by no means been universal. That it is more frequently met with than any other origin is unquestionably true; but in many instances, which will be more fully considered in the following chapter, we find strictly non-digital derivations, especially in the case of the lowest members of the scale. But in nearly all languages the origin of the words for 1, 2, 3, and 4 are so entirely unknown that speculation respecting them is almost useless.

An excellent illustration of the ordinary method of formation which obtains among number scales is furnished by the Eskimos of Point Barrow, who have pure numeral words up to 5, and then begin a systematic course of word formation from the names of their fingers. If the names of the first five numerals are of finger origin, they have so completely lost their original form, or else the names of the fingers themselves have so changed, that no resemblance is now to be detected between them. This scale is so interesting that it is given with considerable fulness, as follows:

The only example of vigesimal reckoning which is comparable with that of the Mayas is the system employed by their northern neighbours, the Nahuatl, or, as they are more commonly designated, the Aztecs of Mexico. This system is quite as pure and quite as simple as the Maya, but differs from it in some important particulars. In its first 20 numerals it is quinary , and as a system must be regarded as quinary-vigesimal. The Maya scale is decimal through its first 20 numerals, and, if it is to be regarded as a mixed scale, must be characterized as decimal-vigesimal. But in both these instances the vigesimal element preponderates so strongly that these, in common with their kindred number systems of Mexico, Yucatan, and Central America, are always thought of and alluded to as vigesimal scales. On account of its importance, the Nahuatl system is given in fuller detail than most of the other systems I have made use of.

Other number scales of this region are given as follows:

HUASTECA.

TOTONACO.

CORA.

Closely allied with the Maya numerals and method of counting are those of the Quiches of Guatemala. The resemblance is so obvious that no detail in the Quiche scale calls for special mention.

QUICHE.

Among South American vigesimal systems, the best known is that of the Chibchas or Muyscas of the Bogota region, which was obtained at an early date by the missionaries who laboured among them. This system is much less extensive than that of some of the more northern races; but it is as extensive as almost any other South American system with the exception of the Peruvian, which was, however, a pure decimal system. As has already been stated, the native races of South America were, as a rule, exceedingly deficient in regard to the number sense. Their scales are rude, and show great poverty, both in formation of numeral words and in the actual extent to which counting was carried. If extended as far as 20, these scales are likely to become vigesimal, but many stop far short of that limit, and no inconsiderable number of them fail to reach even 5. In this respect we are reminded of the Australian scales, which were so rudimentary as really to preclude any proper use of the word "system" in connection with them. Counting among the South American tribes was often equally limited, and even less regular. Following are the significant numerals of the scale in question:

CHIBCHA, OR MUYSCA.

NAGRANDA.

In considering the influence on the manners and customs of any people which could properly be ascribed to the use among them of any other base than 10, it must not be forgotten that no races, save those using that base, have ever attained any great degree of civilization, with the exception of the ancient Aztecs and their immediate neighbours, north and south. For reasons already pointed out, no highly civilized race has ever used an exclusively quinary system; and all that can be said of the influence of this mode of counting is that it gives rise to the habit of collecting objects in groups of five, rather than of ten, when any attempt is being made to ascertain their sum. In the case of the subsidiary base 12, for which the Teutonic races have always shown such a fondness, the dozen and gross of commerce, the divisions of English money, and of our common weights and measures are probably an outgrowth of this preference; and the Babylonian base, 60, has fastened upon the world forever a sexagesimal method of dividing time, and of measuring the circumference of the circle.

The advanced civilization attained by the races of Mexico and Central America render it possible to see some of the effects of vigesimal counting, just as a single thought will show how our entire lives are influenced by our habit of counting by tens. Among the Aztecs the universal unit was 20. A load of cloaks, of dresses, or other articles of convenient size, was 20. Time was divided into periods of 20 days each. The armies were numbered by divisions of 8000; and in countless other ways the vigesimal element of numbers entered into their lives, just as the decimal enters into ours; and it is to be supposed that they found it as useful and as convenient for all measuring purposes as we find our own system; as the tradesman of to-day finds the duodecimal system of commerce; or as the Babylonians of old found that singularly curious system, the sexagesimal. Habituation, the laws which the habits and customs of every-day life impose upon us, are so powerful, that our instinctive readiness to make use of any concept depends, not on the intrinsic perfection or imperfection which pertains to it, but on the familiarity with which previous use has invested it. Hence, while one race may use a decimal, another a quinary-vigesimal, and another a sexagesimal scale, and while one system may actually be inherently superior to another, no user of one method of reckoning need ever think of any other method as possessing practical inconveniences, of which those employing it are ever conscious. And, to cite a single instance which illustrates the unconscious daily use of two modes of reckoning in one scale, we have only to think of the singular vigesimal fragment which remains to this day imbedded in the numeral scale of the French. In counting from 70 to 100, or in using any number which lies between those limits, no Frenchman is conscious of employing a method of numeration less simple or less convenient in any particular, than when he is at work with the strictly decimal portions of his scale. He passes from the one style of counting to the other, and from the second back to the first again, entirely unconscious of any break or change; entirely unconscious, in fact, that he is using any particular system, except that which the daily habit of years has made a part himself.

Deep regret must be felt by every student of philology, that the primitive meanings of simple numerals have been so generally lost. But, just as the pebble on the beach has been worn and rounded by the beating of the waves and by other pebbles, until no trace of its original form is left, and until we can say of it now only that it is quartz, or that it is diorite, so too the numerals of many languages have suffered from the attrition of the ages, until all semblance of their origin has been lost, and we can say of them only that they are numerals. Beyond a certain point we can carry the study neither of number nor of number words. At that point both the mathematician and the philologist must pause, and leave everything beyond to the speculations of those who delight in nothing else so much as in pure theory.

Add to tbrJar First Page Next Page

Back to top Use Dark Theme