Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: General Science by Clark Bertha May

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 950 lines and 72761 words, and 19 pages

The light from the sun, moon, and stars can reach us only by passing through the atmosphere, but in Section 76, we learned that the atmosphere varies in density from level to level; hence all the light which travels through the atmosphere is constantly deviated from its original path, and before the light reaches the eye it has undergone many changes in direction. Now we learned in Section 102, that the direction of the rays of light as they enter the eye determines the direction in which an object is seen; hence the sun, moon, and stars seem to be along the lines which enter the eye, although in reality they are not.

Lenses are very similar to prisms; indeed, two prisms placed as in Figure 69, and rounded off, would make a very good convex lens. A lens is any transparent material, but usually glass, with one or both sides curved. The various types of lenses are shown in Figure 71.

The position of the principal focus depends not only on the shape of the lens, but also on the refractive power of the material composing the lens. A lens made of ice would not deviate the rays of light so much as a lens of similar shape composed of glass. The greater the refractive power of the lens, the greater the bending, and the nearer the principal focus to the lens.

There are many different kinds of glass, and each kind of glass refracts the light differently. Flint glass contains lead; the lead makes the glass dense, and gives it great refractive power, enabling it to bend and separate light in all directions. Cut glass and toilet articles are made of flint glass because of the brilliant effects caused by its great refractive power, and imitation gems are commonly nothing more than polished flint glass.

We learned in Section 114 that a change in the position of the object necessitated a change in the position of the screen, and that every time the object was moved the position of the screen had to be altered before a clear image of the object could be obtained. The retina of the eye cannot be moved backward and forward, as the screen was, and the crystalline lens is permanently located directly back of the iris. How, then, does it happen that we can see clearly both near and distant objects; that the printed page which is held in the hand is visible at one second, and that the church spire on the distant horizon is visible the instant the eyes are raised from the book? How is it possible to obtain on an immovable screen by means of a simple lens two distinct images of objects at widely varying distances?

A nearsighted person is one who cannot see objects unless they are close to the eye. The eyeball of a nearsighted person is very wide, and the retina is too far away from the crystalline lens. Far objects are brought to a focus in front of the retina instead of on it, and hence are not visible. Even though the muscles of accommodation do their best to pull out and flatten the lens, the rays are not separated sufficiently to focus as far back as the retina. In consequence objects look blurred. Nearsightedness can be remedied by wearing concave glasses, since they separate the light and move the focus farther away. Concave glasses, by separating the rays and making the focus more distant, overbalance a wide eyeball with its tendency to focus objects in front of the retina.

An exact balance is required between glasses, crystalline lens, and muscular activity, and only those who have studied the subject carefully are competent to treat so sensitive and necessary a part of the body as the eye. The least mistake in the curvature of the glasses, the least flaw in the type of glass , means an improper focus, increased duty for the muscles, and gradual weakening of the entire eye, followed by headache and general physical discomfort.

Possibly the greatest danger of eye strain is among school children, who are not experienced enough to recognize defects in sight. For this reason, many schools employ a physician who examines the pupils' eyes at regular intervals.

The following general precautions are worth observing:--

PHOTOGRAPHY

Many housewives lower the window shades that the wall paper may not lose its brilliancy, that the beautiful hues of velvet, satin, and plush tapestry may not be marred by loss in brilliancy and sheen. Bright carpets and rugs are sometimes bought in preference to more delicately tinted ones, because the purchaser knows that the latter will fade quickly if used in a sunny room, and will soon acquire a dull mellow tone. The bright and gay colors and the dull and somber colors are all affected by the sun, but why one should be affected more than another we do not know. Thousands of brilliant and dainty hues catch our eye in the shop and on the street, but not one of them is absolutely permanent; some may last for years, but there is always more or less fading in time.

Sunlight causes many strange, unexplained effects. If the two substances, chlorine and hydrogen, are mixed in a dark room, nothing remarkable occurs any more than though water and milk were mixed, but if a mixture of these substances is exposed to sunlight, a violent explosion occurs and an entirely new substance is formed, a compound entirely different in character from either of its components.

But a photograph on glass, which must be carefully shielded from the light and admired only in the dark room, would be neither pleasurable nor practical. If there were some way by which the hitherto unaffected silver chloride could be totally removed, it would be possible to take the plate into any light without fear. To accomplish this, the unchanged silver chloride is got rid of by the process technically called "fixing"; that is, by washing off the unreduced silver chloride with a solution such as sodium thiosulphite, commonly known as hypo. After a bath in the hypo the plate is cleansed in clear running water and left to dry. Such a process gives a clear and permanent picture on the plate.

Glass plates are heavy and inconvenient to carry, so that celluloid films have almost entirely taken their place, at least for outdoor work.

The white collar would send through the lens the most light to the sensitive plate; hence the silver chloride on the plate would be most changed at the place where the lens formed an image of the collar. The gray coat would not send to the lens so much light as the white collar, hence the silver chloride would be less affected by the light from the coat than by that from the collar, and at the place where the lens produced an image of the coat the silver chloride would not be changed so much as where the collar image is. The light from the face would produce a still different effect, since the light from the face is stronger than the light from the gray coat, but less than that from a white collar. The face in the image would show less changed silver chloride than the collar, but more than the coat, because the face is lighter than the coat, but not so light as the collar. Finally, the silver chloride would be least affected by the dark tie. The wall paper in the background would affect the plate according to the brightness of the light which fell directly upon it and which reflected to the camera. When such a plate has been developed and fixed, as described in Section 121, we have the so-called negative . The collar is very dark, the black tie and gray coat white, and the white tidy very dark.

The lighter the object, such as tidy or collar, the more salt is changed, or, in other words, the greater the portion of the silver salt that is affected, and hence the darker the stain on the plate at that particular spot. The plate shows all gradations of intensity--the tidy is dark, the black tie is light. The photograph is true as far as position, form, and expression are concerned, but the actual intensities are just reversed. How this plate can be transformed into a photograph true in every detail will be seen in the following Section.

If properly treated, a negative remains good for years, and will serve for an indefinite number of positives or true photographs.

Not all micro?rganisms are harmful; some are our friends and are as helpful to us as are cultivated plants and domesticated animals. Among the most important of the micro?rganisms are bacteria, which include among their number both friend and foe. In the household, bacteria are a fruitful source of trouble, but some of them are distinctly friends. The delicate flavor of butter and the sharp but pleasing taste of cheese are produced by bacteria. On the other hand, bacteria are the cause of many of the most dangerous diseases, such as typhoid fever, tuberculosis, influenza, and la grippe.

COLOR

The exquisite tints of the rainbow can be seen if we look at an object through a prism or chandelier crystal, and a very simple experiment enables us to produce on the wall of a room the exact colors of the rainbow in all their beauty.

Whenever light passes through a prism or lens, it is dispersed or separated into all the colors which it contains, and a band of colors produced in this way is called a spectrum. If we examine such a spectrum we find the following colors in order, each color imperceptibly fading into the next: violet, indigo, blue, green, yellow, orange, red.

White light is not a simple light, but is composed of all the colors which appear in the rainbow.

If a piece of blue glass is substituted for the red glass, the blue band remains on the wall, while all the other colors disappear. If both blue and red pieces of glass are held in the path of the beam, so that the light must pass through first one and then the other, the entire spectrum disappears and no color remains. The blue glass absorbs the various rays with the exception of the blue ones, and the red glass will not allow these blue rays to pass through it; hence no light is allowed passage to the eye.

An emerald looks green because it freely transmits green, but absorbs the other colors of which ordinary daylight is composed. A diamond appears white because it allows the passage through it of all the various rays; this is likewise true of water and window panes.

Stained-glass windows owe their charm and beauty to the presence in the glass of various dyes and pigments which absorb in different amounts some colors from white light and transmit others. These pigments or dyes are added to the glass while it is in the molten state, and the beauty of a stained-glass window depends largely upon the richness and the delicacy of the pigments used.

A child wearing a green frock on Independence Day seems at night to be wearing a black frock, if standing near powders burning with red, blue, or violet light.

We naturally ask ourselves whether these colors which compose white light are themselves in turn compound? To answer that question, let us very carefully insert a second prism in the path of the rays which issue from the first prism, carefully barring out the remaining six kinds of rays. If the red light is compound, it will be broken up into its constituent parts and will form a typical spectrum of its own, just as white light did after its passage through a prism. But the red rays pass through the second prism, are refracted, and bent from this course, and no new colors appear, no new spectrum is formed. Evidently a ray of spectrum red is a simple color, not a compound color.

A snowy field stimulates equally all three sets of optic nerves--the red, the green, and the blue. Lavender, which is one part blue and three parts white, would stimulate all three sets of nerves, but with a maximum of stimulation for the blue. Equal stimulation of the three sets would give the impression of white.

A color-blind person has some defect in one or more of the three sets of nerves which carry the color message to the brain. Suppose the nerve fibers responsible for carrying the red are totally defective. If such a person views a yellow flower, he will see it as a green flower. Yellow contains both red and green, and hence both the red and green nerve fibers should be stimulated, but the red nerve fibers are defective and do not respond, the green nerve fibers alone being stimulated, and the brain therefore interprets green.

A well-known author gives an amusing incident of a dinner party, at which the host offered stewed tomato for apple sauce. What color nerves were defective in the case of the host?

In some employments color blindness in an employee would be fatal to many lives. Engineers and pilots govern the direction and speed of trains and boats largely by the colored signals which flash out in the night's darkness or move in the day's bright light, and any mistake in the reading of color signals would imperil the lives of travelers. For this reason a rigid test in color is given to all persons seeking such employment, and the ability to match ribbons and yarns of all ordinary hues is an unvarying requirement for efficiency.

HEAT AND LIGHT AS COMPANIONS

"The night has a thousand eyes, And the day but one; Yet the light of the bright world dies With the dying sun."

We can show that when light passes through a prism and is refracted, forming a spectrum, as in Section 127, it is accompanied by heat. If we hold a sensitive thermometer in the violet end of the spectrum so that the violet rays fall upon the bulb, the reading of the mercury will be practically the same as when the thermometer is held in any dark part of the room; if, however, the thermometer is slowly moved toward the red end of the spectrum, a change occurs and the mercury rises slowly but steadily, showing that heat rays are present at the red end of the spectrum. This agrees with the popular notion, formed independently of science, which calls the reds the warm colors. Every one of us associates red with warmth; in the summer red is rarely worn, it looks hot; but in winter red is one of the most pleasing colors because of the sense of warmth and cheer it brings.

What seems perhaps the most unexpected thing, is that the temperature, as indicated by a sensitive thermometer, continues to rise if the thermometer is moved just beyond the red light of the spectrum. There actually seems to be more heat beyond the red than in the red, but if the thermometer is moved too far away, the temperature again falls. Later we shall see what this means.

Suppose we allow the sun's rays to fall perpendicularly upon a metal cylinder coated with lampblack and filled with a known quantity of water ; at the expiration of a few hours the temperature of the water will be considerably higher. Lampblack is a good absorber of heat, and it is used as a coating in order that all the light rays which fall upon the cylinder may be absorbed and none lost by reflection.

Light and heat rays fall upon the lampblack, pass through the cylinder, and heat the water. We know that the red light rays have the largest share toward heating the water, because if the cylinder is surrounded by blue glass which absorbs the red rays and prevents their passage into the water, the temperature of the water begins to fall. That the other light rays have a small share would have been clear from the preceding Section.

All the energy of the sunshine which falls upon the cylinder, both as heat and as light, is absorbed in the form of heat, and the total amount of this energy can be calculated from the increase in the temperature of the water. The energy which heated the water would have passed onward to the surface of the earth if its path had not been obstructed by the cylinder of water; and we can be sure that the energy which entered the water and changed its temperature would ordinarily have heated an equal area of the earth's surface; and from this, we can calculate the energy falling upon the entire surface of the earth during any one day.

Computations based upon this experiment show that the earth receives daily from the sun the equivalent of 341,000,000,000 horse power--an amount inconceivable to the human mind.

Professor Young gives a striking picture of what this energy of the sun could do. A solid column of ice 93,000,000 miles long and 2-1/4 miles in diameter could be melted in a single second if the sun could concentrate its entire power on the ice.

While the amount of energy received daily from the sun by the earth is actually enormous, it is small in comparison with the whole amount given out by the sun to the numerous heavenly bodies which make up the universe. In fact, of the entire outflow of heat and light, the earth receives only one part in two thousand million, and this is a very small portion indeed.

A quiet pool and a pebble will help to make it clear to us. If we throw a pebble into a quiet pool , waves or ripples form and spread out in all directions, gradually dying out as they become more and more distant from the pebble. It is a strange fact that while we see the ripple moving farther and farther away, the particles of water are themselves not moving outward and away, but are merely bobbing up and down, or are vibrating. If you wish to be sure of this, throw the pebble near a spot where a chip lies quiet on the smooth pond. After the waves form, the chip rides up and down with the water, but does not move outward; if the water itself were moving outward, it would carry the chip with it, but the water has no forward motion, and hence the chip assumes the only motion possessed by the water, that is, an up-and-down motion. Perhaps a more simple illustration is the appearance of a wheat field or a lawn on a windy day; the wind sweeps over the grass, producing in the grass a wave like the water waves of the ocean, but the blades of grass do not move from their accustomed place in the ground, held fast as they are by their roots.

If a pebble is thrown into a quiet pool, it creates ripples or waves which spread outward in all directions, but which soon die out, leaving the pool again placid and undisturbed. If now we could quickly withdraw the pebble from the pool, the water would again be disturbed and waves would form. If the pebble were attached to a string so that it could be dropped into the water and withdrawn at regular intervals, the waves would never have a chance to disappear, because there would always be a regularly timed definite disturbance of the water. Learned men tell us that all hot bodies and all luminous bodies are composed of tiny particles, called molecules, which move unceasingly back and forth with great speed. In Section 95 we saw that the molecules of all substances move unceasingly; their speed, however, is not so great, nor are their motions so regularly timed as are those of the heat-giving and the light-giving particles. As the particles of the hot and luminous bodies vibrate with great speed and force they violently disturb the medium around them, and produce a series of waves similar to those produced in the water by the pebble. If, however, a pebble is thrown into the water very gently, the disturbance is slight, sometimes too slight to throw the water into waves; in the same way objects whose molecules are in a state of gentle motion do not produce light.

The particles of heat-giving and light-giving bodies are in a state of rapid vibration, and thereby disturb the surrounding medium, which transmits or conveys the disturbance to the earth or to other objects by a train of waves. When these waves reach their destination, the sensation of light or heat is produced.

We see the water waves, but we can never see with the eye the heat and light waves which roll in to us from that far-distant source, the sun. We can be sure of them only through their effect on our bodies, and by the visible work they do.

Light and heat differ as much as the short, choppy waves of the ocean and the slow, long swell of the ocean, but not more so. The sailor handles his boat in one way in a choppy sea and in a different way in a rolling sea, for he knows that these two kinds of waves act dissimilarly. The long, slow swell of the ocean would correspond with the longer, slower waves which travel out from the sun, and which on reaching us are interpreted as heat. The shorter, more frequent waves of the ocean would typify the short, rapid waves which leave the sun, and which on reaching us are interpreted as light.

ARTIFICIAL LIGHTING

With the invention of the kerosene lamp came more efficient lighting of home and street, and with the advent of gas and electricity came a light so effective that the hours of business, manufacture, and pleasure could be extended far beyond the setting of the sun.

The production of light by candle, oil, and gas will be considered in the following paragraphs, while illumination by electricity will be reserved for a later Chapter.

The wick, when lighted, burns for a brief interval with a faint, uncertain light; almost immediately, however, the intensity of the light increases and the illumination remains good as long as the candle lasts. The heat of the burning tallow melts more of the tallow near it, and this liquid fat is quickly sucked up into the burning wick. The heat of the flame is sufficient to change most of this liquid into a gas, that is, to vaporize the liquid, and furthermore to set fire to the gas thus formed. These heated gases burn with a bright yellow flame.

One great disadvantage of oil lamps and oil stoves is that they cannot be carried safely from place to place. It is almost impossible to carry a lamp without spilling the oil. The flame soon spreads from the wick to the overflowing oil and in consequence the lamp blazes and an explosion may result. Candles, on the other hand, are safe from explosion; the dripping grease is unpleasant but not dangerous.

Add to tbrJar First Page Next Page

Back to top Use Dark Theme