|
Read Ebook: Hemp Hurds as Paper-Making Material by Dewey Lyster H Lyster Hoxie Merrill Jason L
Font size: Background color: Text color: Add to tbrJar First Page Next PageEbook has 83 lines and 16562 words, and 2 pagesWhat hemp hurds are 1 Pith, wood, and fiber 2 Character of hurds affected by retting 2 Proportion of hurds to fiber and yield per acre 3 Hurds available from machine-broken hemp 3 Present uses of hemp hurds 4 Present supplies of hurds available 5 Baling for shipment 5 Cost of baling 5 Summary 6 The manufacture of paper from hemp hurds, by Jason L. Merrill: Introduction 7 Factors justifying an investigation of hemp hurds 8 Character of the material 11 Character of the tests 12 Operations involved in a test 13 Description of tests 16 Comparison of the tests and commercial practice 21 Physical tests of the papers produced 24 Conclusions 25 In preparing the report on the manufacture of paper from hemp hurds it became evident that a short discussion of the agricultural aspects of this material should be included in the publication. Such an article was prepared, therefore, and the two reports are here presented together. The woody inner portion of the hemp stalk, broken into pieces and separated from the fiber in the processes of breaking and scutching, is called hemp hurds. These hurds correspond to shives in flax, but are much coarser and are usually softer in texture. The hemp stalk grown in a broadcast crop for fiber production is from one-eighth to three-eighths of an inch in diameter and from 4 to 10 feet tall. The stalk is hollow, with a cylindrical woody shell, thick near the base, where the stalk is nearly solid, and thinner above, where the hollow is relatively wider. In the process of breaking, the woody cylinder inside of the fiber-bearing bark is broken into pieces one-half of an inch to 3 inches long and usually split into numerous segments. The thicker lower sections are split less than the thin-shelled upper ones, and they are often left quite solid. The inner surface of the hurds usually bears a layer of pith, consisting of thin-walled cells nearly spherical or angular, but not elongated. They are more or less crushed and torn. They are probably of little value for paper, but they constitute less than 1 per cent of the weight of the hurds. The principal weight and bulk consist of slender elongated woody cells. The outer surface is covered with fine secondary fibers composed of slender elongated cells, tougher than those of the wood but finer and shorter than those of the hemp fiber of commerce. No method has been devised thus far which completely separates from the hurds all of the long fiber. From 5 to 15 per cent of the weight of the hurds consists of hemp fiber, in strands from 3 inches to 8 feet in length. Some fragments of the bark, made up of short cubical cells, usually dark in color, cling to the strands of fiber. Nearly all of the hemp in the United States is dew retted. The stalks are spread on the ground in swaths as grain is laid by the cradle. The action of the weather, dew, and rain, aided by bacteria, dissolves and washes out the green coloring matter and most of the gums, leaving only the fibrous bark and the wood. The plants in this process lose about 60 per cent of their green weight, or about 40 per cent of their air-dry weight. The stalks are sometimes set up in shocks to cure before retting, and after retting they are set up in shocks to dry. Each time the stalks are handled they are chucked down on the ground to keep the butts even. In these operations sand and clay are often driven up into the hollow at the base of the stalks, and this dirt, which often clings tenaciously, may constitute all objectionable feature in the use of hemp hurds for paper stock. In Italy and in most localities in Russia and Austria-Hungary where hemp is extensively cultivated, it is retted in water, but water retting has never been practiced in the United States except to a limited extent before the middle of the last century. Hurds from water-retted hemp are cleaner and softer than those from dew-retted hemp. The fiber is sometimes broken from dry hemp stalks without retting. The hurds thus produced contain a small percentage of soluble gums, chiefly of the pectose series. Comparatively little hemp is prepared in this manner in America. Process retting by means of weak solutions of chemicals or oils in hot water is practiced to a limited extent. The hurds from these processes may contain traces of the chemicals or oils and also soluble gums in greater degree than those of the dew-retted or water-retted hemp. The yield of hemp fiber varies from 400 to 2,500 pounds per acre, averaging 1,000 pounds under favorable conditions. The weight of hurds is about five times that of the fiber, or somewhat greater from hemp grown on peaty soils. A yield of 2-1/2 tons of hurds per acre may be taken as a fair average. Hemp hurds are available only from hemp which is broken by machines, when the hurds may be collected in quantity in one place . Most of the hemp in Kentucky is still broken by hand brakes. These small brakes are moved from shock to shock, so that the hurds are scattered all over the field in small piles of less than 50 pounds each, and it is the common practice to set fire to them as soon as the brake is moved. It would be difficult to collect them at a cost which would permit their use for paper stock. Where machine brakes are used, the hemp stalks are brought to the machine as grain is brought to a thrashing machine, and the hurds accumulate in large piles, being blown from the machine by wind stackers. Machine brakes are used in Wisconsin, Indiana, Ohio, and California, but to only a limited extent in Kentucky. Five different kinds of machine brakes are now in actual use in this country, and still others are used in Europe. All of the best hemp in Italy, commanding the highest market price paid for any hemp, is broken by machines. The better machine brakes now in use in this country prepare the fiber better and much more rapidly than the hand brakes, and they will undoubtedly be used in all localities where hemp raising is introduced as a new industry. They may also be used in Kentucky when their cost is reduced to more reasonable rates, so that they may compete with the hand brake. Hemp-breaking machines are being improved and their use is increasing. The hemp-growing industry can increase in this country only as machine brakes are developed to prepare the fiber. A profitable use for the hurds will add an incentive to the use of the machine brake. Hemp hurds are used to a limited extent for barnyard litter and stable bedding, as a substitute for sawdust in packing ice, and, in rare instances, for fuel. They are not regarded as having a commercial value for any of these uses, though they are doubtless worth at least per ton on the farm when used for stable bedding. They are a waste product, without value for other purposes which might compete with their use for paper stock. During the last season, 1915, about 1,500 acres of hemp have been harvested outside of Kentucky and in regions where machine brakes are used. Estimating the yield of hurds at 2-1/2 tons per acre, this should give a total quantity of about 3,750 tons. Large quantities of hemp from the crop of 1914, which are still unbroken in these areas, and large piles of hurds undisturbed where the machines have been used during the last two or three years, increase the total to more than 7,000 tons. Hemp is now grown outside of Kentucky in the vicinity of McGuffey, east of Lima, Ohio; around Nappanee, Elkhart County, and near Pierceton, in Kosciusko County, Ind.; about Waupun and Brandon, Wis.; and at Rio Vista and Stockton, Cal. In Kentucky, hemp is grown in most of the counties within a radius of 50 miles of Lexington. No accurate statistics of the acreage are collected, but the crop harvested in 1915 is estimated at 7,000 acres. A machine brake will probably be used in Bourbon County and also in Clark County, but most of the hemp in Kentucky will be broken on hand brakes. The hurds will have to be baled to facilitate handling in transportation and to economize storage space at the paper mills. The bales will need to be covered with burlap or some material to keep them from shaking out. They may be baled in the same presses that are used for baling hemp fiber, but care must be exercised to avoid breaking the press, for the hurds are more resistant than hemp fiber. A bale of hemp 2 by 3 by 4 feet weighs about 500 pounds. A bale of hurds of the same size will weigh about one-third less, or approximately six bales per ton. Rough hemp fiber as it is shipped from the farm is not covered; therefore, the covering material must be purchased especially for the hurds. A piece of burlap about 36 by 48 inches placed on either side of the bale will be sufficient, but these pieces, weighing about 3 pounds each, cost about 40 cents a pair. Baling rope, in addition to jute covering, will cost at least 5 cents per bale, making the total cost of covering and ties .70 or more per ton. Possibly chip-board, costing about per ton, or not more than 5 cents for the two pieces for each bale, may be used in place of burlap. Chip-board, burlap, and also rope ties may all be used for paper stock. Burlap covers might be returned, to be used repeatedly until worn out, but chip-board could not be used more than once. If burlap covers are used the cost of baling, including covering, ties, use of baling press, power, and labor will amount to at least 60 cents per bale, or about .75 per ton. If chip-board can be used the cost may be reduced to about per ton. The cost of hauling and loading on the cars will vary from to per ton, depending upon the distance and the roads. The farmer must therefore receive from to per ton for the hurds, baled, on board cars at his home station. Hemp hurds are the woody inner portion of the hemp stalk, broken into pieces in removing the fiber. They are not used at present for any purpose that would compete with their use for paper. Hurds are available only from machine-broken hemp, for the cost of collecting them from the hand brakes would be too great. About 7,000 tons are now available in restricted localities in Ohio, Indiana, Wisconsin, and California. The quantity is likely to increase as the use of machine brakes increases. The hurds may be baled in hemp-fiber presses, with partial burlap covers like those on cotton bales, or possibly chip-board covers. It is estimated that the farmers may deliver the bales on board cars profitably at to per ton. THE MANUFACTURE OF PAPER FROM HEMP HURDS. The purpose of this paper is to report upon preliminary tests which were conducted to determine the paper-making value of hemp hurds, a crop waste of the hemp-fiber industry. The search for plant materials capable of being utilized in paper manufacture is a comparatively recent but world-wide activity which has for its object the husbanding of present sources of paper-stock supply by the substitution of new materials for some of those which are rapidly becoming less plentiful and more costly. The abstract idea of utilizing that which is at present a waste can play no important r?le in such activities, the successful commercial outcome of which must be based on the three fundamental factors--market or demand for product, satisfactory raw material, and cost. Since hemp hurds are to be treated in this report as a raw material for the manufacture of book and printing papers, the qualities, supply, probable future, and cost of the material will be considered in comparison with wood, with which it must compete. There seems to be little doubt that the present wood supply can not withstand indefinitely the demands placed upon it, and with increased scarcity economy in the use of wood will become imperative. This effect is already apparent in many wood-using industries, and although the paper industry consumes only about 3 per cent of the total forest cut, it is probable that it will be affected through this economy. Our forests are being cut three times as fast as they grow, and as wood becomes more expensive proper growing and reforesting will receive more attention. Thus, naturally, a balance will be established between production and consumption, but as this condition approaches its limiting values the price of wood may rise to such levels that there will be a demand for other raw materials. The use of waste paper in conjunction with chemical wood pulp has increased to enormous proportions, and it is probable that the increase will continue. Although it is a cheaper raw material than wood, it is reasonable to suppose that as the wood supply decreases and the price of wood pulp advances, the price of waste paper will advance somewhat proportionately. In view of these conditions it is advisable to investigate the paper-making value of the more promising plant materials before a critical situation arises. To be of substantial value the investigations should include not only a determination of the quality and quantity of pulp and paper which the material is capable of producing, but should embrace a consideration of such relevant factors as agricultural conditions, farm practice, assembling conditions, transportation, and probable future supply. Certain cultivated plants seem particularly promising, because in the harvesting of the regular crop that portion which might be utilized for paper manufacture necessarily is either wholly or partially assembled. To this class of plants belong corn, broom corn, sorghum, sugar cane, bagasse, flax, hemp, and the cereal straws. It is generally conceded that the employment of different raw materials would probably yield products of a somewhat different quality than those now prevailing in the markets, but the qualities of papers and the public demands are so diversified and numerous that this possible objection should not be serious. Ten years ago sulphite manufacturers would not accept consignments of spruce logs if they contained over 5 per cent of fir, while to-day many manufacturers tolerate 50 per cent. Rope papers are found to contain not only jute, but when this raw material is not plentiful, chemical pulp of various kinds. "Linen paper" is often no more than a trade term. Not long ago printing papers were made entirely from chemical wood pulp, but to-day if it is desired to secure paper which is free from ground wood the specifications must so stipulate. Writing papers, formerly made entirely from rags, now are likely to contain either chemical or even ground-wood pulp unless the specifications prohibit it. Without doubt, many paper manufacturers have maintained certain papers up to a fixed standard for a long series of years, but it is equally true that competition has lowered the standard of a great many papers, some of which had acquired a distinctive recognition. The employment of plant fibers will not necessarily lower the present quality of papers, but if their employment does result in products whose qualities are somewhat different from our so-called standard papers it does not necessarily follow that such papers will not find a ready market. Hemp hurds form a crop waste, in that they necessarily are produced in the raising and preparation of hemp fiber, and their present use and value are comparatively insignificant. The assembling of the hurds may be effected with economy, since the area in which hemp is handled with the use of machine brakes is restricted. Although it must be stated that the present annual supply would not be sufficient to justify the installation of a pulp mill nor would its transportation to existing mills appear feasible, it is expected that the available annual tonnage, especially in certain general sections, will increase, due to the increased use of the machine brake. The present tonnage per annum is approximately as follows: In the region of Ohio and Indiana, 2,500 tons; in the Wisconsin section, 1,000 tons; in the California region, 1,400 tons. In years of adverse weather conditions there are often large areas of hemp which are not harvested on account of its poor quality; there are also large areas of cut hemp which become overretted, due to inclement weather. It has been suggested by some of the hemp raisers that this large amount of material might be utilized as a paper stock. In these cases the cost of the whole material would probably be somewhat higher than that of the hurds, because either all or part of the cost of harvesting and the total cost of breaking would have to be borne by the paper maker. Moreover, the quality of this material would be so very irregular and the supply so uncertain that it probably would not appeal to the paper manufacturer. Without doubt, hemp will continue to be one of the staple agricultural crops of the United States. The wholesale destruction of the supply by fire, as frequently happens in the case of wood, is precluded by the very nature of the hemp-raising industry. Since only one year's growth can be harvested annually the supply is not endangered by the pernicious practice of overcropping, which has contributed so much to the present high and increasing cost of pulp wood. The permanency of the supply of hemp hurds thus seems assured. The favorable location geographically of the hemp regions in relation to the pulp and paper industry is a factor of considerable importance. The Kentucky region is not at present in a position to supply hurds, as machine methods have not been adopted there to any appreciable degree. The Ohio and Indiana region, which at present has the greatest annual tonnage, with the prospect of an increase, is situated south of the Wisconsin and Michigan wood-pulp producing region and at a distance from the eastern wood-pulp producing regions; therefore, it is in a favorable position to compete in the large Ohio and Indiana markets. Since, as will be shown, the hurd pulp acts far more like soda poplar stock than sulphite stock, competition would be strongest from the eastern mills; in fact, the hurd stock might very possibly meet with favor as a book-stock furnish in the Michigan and Wisconsin paper mills, which are within the sulphite fiber-producing region. Because of its very close proximity to paper mills, this latter possibility applies with far greater force to the Wisconsin hemp region, where a considerable extension of the hemp industry is anticipated. As received from Pierceton, Ind., the hurds consisted of a mixture of tangled hemp bast fibers and pieces of broken wood of the hemp stalk. No reliable data were secured as to the proportion of bast fiber in the total shipment of 4 tons, although two hand separations of small representative samples gave results averaging 8 per cent. The chemical character of the material was such and the quantity was so small that any appreciable variation of the proportion should not affect materially the treating processes finally adopted, yet its presence in varying proportions undoubtedly would modify to some extent the quality of the resulting paper product. Since the length of the ultimate bast fiber averages about 22 mm. and the length of the ultimate hemp wood fiber averages 0.7 mm., it is natural to assume that the bast fiber would tend to increase the strength of paper produced from the hurds. The broken pieces of wood contained in the hurds varied in length from mere particles which were somewhat finer than sawdust to pieces about 3-1/2 inches long, exceptional pieces being found which measured 6 inches in length. The majority of the long pieces were between 2 and 3 inches in length. In thickness the pieces ranged from one-eighth of an inch, in case they were derived from the base of the hemp stalks, to about one sixty-fourth of an inch in those pieces which were derived from the top and branches of the stalks. In cross section the pieces often were found to be a quarter or half of the rounded rectangular woody shell of the stalk, although there appeared to be no regularity in this respect. From the pulp-maker's standpoint the great irregularity in thickness, length, and mass of the woody pieces militates decidedly against economy in pulp production. The smaller pieces reduce by chemical treatment sooner than the larger fragments and are thereby overtreated, which results in a lower yield of cellulose fiber and a product composed of undertreated and overtreated fibers, the production and use of which are not satisfactory or economical. It probably would be found more satisfactory, therefore, to screen or sort the hurds and treat the various sizes separately and differently. Associated with the hurds was a small quantity of chaff and dirt, composed chiefly of sand, soil, particles of hemp leaves and flowers, and other extraneous matter. The sand and soil were present because of the practice of placing the stalks in shocks in the field, the butts of the stalks being in contact with the soil. It is a simple matter, however, to remove the chaff and dirt by sieving, and this practice was followed in most of the paper tests conducted with this material. Because of the similarity of hemp hurds to other materials which have been tested by the Office of Paper-Plant Investigations, semicommercial tests were conducted in cooperation with a paper manufacturer without preliminary laboratory tests. Laboratory pulp and paper tests are regarded only as a preliminary to semicommercial tests and therefore are not employed unless the material in question presents new features which should receive investigation before larger sized tests are undertaken. The advantages of cooperative mill tests are many, among which may be mentioned the counsel and advice of the mill management and employees, the services of specialized and skilled labor, facilities for comparing the processes and the results of tests with commercial processes and results, and the use of commercial or semicommercial types and sizes of machinery. Tests conducted in this manner and on this scale are of a different quality than is possible in those conducted in a laboratory, and the results are susceptible of commercial interpretation with a fair degree of reliability. It is found, in general, that the cost of securing such equipment and service for a complete and comprehensive test does not exceed 0, while the installation of an equally satisfactory equipment alone would cost at least ,000 and in many cases very much more. Tests conducted in this manner constitute a direct demonstration to the manufacturer, and the results obtained are found to carry more weight when presented to other manufacturers for consideration. It is well known that the method of conducting tests necessarily varies with the size of the test. In the matter of yield determination, for example, laboratory tests may be on such a small scale that the weighing and sampling of the resulting cellulose fibers may be conducted by means of chemical laboratory apparatus and analytical balance, while in tests involving a matter of 5 to 10 pounds of material larger and different types of equipment are necessary. When the tests are so increased in size as to employ 300 or 400 pounds, still other types of equipment are necessary for the treatment of the material and for a determination of the yield of fiber. In tests involving tons of material the equipment involves the use of machines. Accuracy in degree of control and in results will vary materially with the size of the test. As the size of the test increases, certain factors will vary in a beneficial manner, while others will vary in a detrimental manner, so it is a question for each investigator to decide, after taking all factors into consideration, as to the size of test which will give the most satisfactory results. In work of this nature it is found, on the whole, that better results are obtained in large tests, although the control of the factors and the determination of the yield of fiber are more difficult than in smaller tests. Add to tbrJar First Page Next Page |
Terms of Use Stock Market News! © gutenberg.org.in2025 All Rights reserved.