|
Read Ebook: From Xylographs to Lead Molds; A.D. 1440-A.D. 1921 by Forster H C
Font size: Background color: Text color: Add to tbrJar First Page Next Page Prev PageEbook has 803 lines and 51042 words, and 17 pagesThese and other experiments, however, were leading to the real stereotyping process which developed later. Early in the nineteenth century, Earl Stanhope, of England, re-introduced Ged's stereotyping process with many improvements. One or more pages of type were locked in a chase, the surface of the type being oiled to prevent the subsequent mold from sticking. The mold was made by pouring a semi-fluid composition of plaster-of-paris mixed with a little fine salt to make the plaster settle solidly. While the plaster was still soft, it was carefully pressed down and rolled smooth on top to give a uniform thickness to the mold and to expel any air there might be in the plaster. When the plaster became solid, it formed a perfect matrix of the type pages. A later method of casting from a plaster mold was to place it in a frame with a smooth, flat plate opposite the face of the mold and to enclose the open space at one end and on the two sides. The casting space thus formed was then turned with the open end up and metal was poured in with a ladle, in a manner similar to the method still employed for casting job-work stereotypes. The distance between the flat plate and the mold was adjusted to make a stereotype plate of the required thickness. After the removal and cooling of the casting pan, the plates were freed from the plaster and the surplus metal cut off. Only one cast could be made, as the mold was usually destroyed in removing the cast. The stereotype was then sent to the finishing department, where the face was cleaned and examined for defective letters, then trimmed on the sides and planed off uniformly on the back to the desired thickness, in the same manner as a stereotype is treated today. A defective letter could be mortised out of the plate and a good type inserted in its place. In cases where a whole line or other part was imperfect, another mold was made of as much of the form as was necessary and the new cast inserted and soldered to the plate. There were many and varied experiments made in the earlier development of this idea of producing a duplicate printing form in a single piece. That such a process was highly desirable was universally recognized, and the conviction that some practicable and economical method was feasible was a continual incentive which gradually led to better results. STEREOTYPING IN AMERICA Although credit is given to John Watts, an Englishman then working in America, for making the first stereotype plates here, the real introduction of the process into the United States was by David Bruce. This was in 1813. Bruce had learned the printer's trade in Edinburgh and later came to America, where after a few years he was joined by his brother George in establishing the firm of D. & G. Bruce, printers. Hearing of the new process of stereotyping in England, he went over there to learn about it. He could get very little information about the process there, but came back with some practical ideas which he proceeded to carry out. Bruce and his brother also began type-founding about this time, and abandoned the business of printing. Later they gave up the work of stereotyping. The first book stereotyped in the United States was the New Testament, in 1814. Bibles and school books were the first works to be stereotyped; then came other books which were demanded in many editions, such as the works of popular authors. The modern wet stereotype "flong," in common use today, consists of several layers of special paper pasted together to form a thick sheet. The base is a sheet of special soft stock similar to firm blotting-paper, such as is used between leaves of small blank books. Three or four sheets of strong, white tissue are next added, each sheet except the last being uniformly covered with the paste. The pasting must be done with great care so as to cover the entire surface of each sheet and at the same time to press out all air bubbles. The sheets must then be pressed smoothly but not squeezed so hard as to force the paste out and must be kept moist until used. In newspaper syndicate plants, the "flong" is made automatically by a specially devised machine into which the various kinds of paper used are fed from rolls, the pasting and cutting into sheets being mechanical. In molding a papier-mache matrix, the moist "flong" is laid on the original molding form to be duplicated, the molding form being in place on the table of the molding press. The "flong" is covered with several blankets of thick felt and the table of the molding press is then automatically moved in under a powerful roller which squeezes the moist flong down into the form. At the end of its travel the table is automatically brought back again under the rollers to the position from which it started. The speed of the roller and the table is synchronized to obviate any possibility of the mat becoming wrinkled by sliding. The molded matrix and the pattern with the blanket still on it is then transferred to the drying press, in which under a hot platten it is again squeezed and allowed to remain for a few minutes until the moisture is completely expelled from the molded flong. The drying press is kept at a high temperature, usually by steam heat. The matrix thus dried out to a thick, flexible cardboard is then ready for the casting of the stereotype, which is done by pouring molten stereotype metal against the face of the matrix placed in a casting-box designed for this purpose. A successive number of stereotypes can be cast for the same mat before it is injured by the hot metal. For job-work stereotyping the casting-box is flat, and the molten metal is either poured by hand or automatically pumped in the casting-box. After the stereotype is cast it is flattened, rough shaved, smooth shaved, bevelled or blocked on wood; the wood base trimmed and then planed type-high for printing press use. The large daily papers cast the full-page stereotype from which the paper is printed in an automatic casting machine which forms a curved plate, trimmed and bevelled, to fit the cylinder of the press. Stereotyping was for many years the chief means of making plates for books and also for commercial printing. It has several advantages. The first, obviously, is the advantage which it shares with several other methods of providing a solid printing plate made by molding from an original form of type or engraving. Its peculiar advantage, however, is that it is the quickest method of producing a duplicate plate from an original. In comparison with electrotyping, however, it has two distinct disadvantages. One is that it is not adapted for reproducing the fine lines of engravings and type faces. In addition it is comparatively shallow and does not possess a sharp, clean printing face. The other disadvantage is that a stereotype is relatively soft and quickly worn. Stereotypes have been made more durable, to withstand the wear of printing, by the deposition of a film of harder metal--copper or nickel--on the face of the plate after it has been cast. This, however, is not satisfactory, as it involves not only another operation, but also makes an already shallow printing plate that much shallower and increases the probability of it printing "dirty," which is one of the chief objections to the stereotype in itself. This practice is not recommended. ELECTROTYPING In 1799, Allesandro Volta, of Pavia, in Italy, constructed the first electric battery, which came to be called the Voltaic pile. Improvements in the form of Volta's battery were made almost immediately by William Cruickshank, in England, who discovered in experimenting with it that he could by its power electrolyze or chemically decompose the salts of certain metals in solution. Both copper and silver, he found, could be precipitated from their salt solutions and deposited upon a plate immersed in the solution. This observation was the first step in the process of electroplating, which is electrotyping when applied to the art of typography. In 1837, thirty-eight years after Volta's discovery, Mr. Thomas Spencer of Liverpool, England, accidentally stumbled upon the first realization of the electrotyping process. While experimenting with a modification of a Daniell battery, he used an English copper penny as one of the poles instead of a plain piece of copper. A deposition of copper from the solution in the battery took place upon the penny, and upon removing the wire which attached the penny to the zinc plate a portion of the copper deposit was pulled off the penny also. It was some time later, however, before this suggested to him any useful application of the process. Another accident made him appreciate the full value of his discovery. This time he carelessly dropped some varnish on a strip of copper which he was going to use in the same way he did the penny. Upon removing the copper from the battery he observed that there was no deposition of copper on those parts of the strip where the varnish had dropped. Spencer then conceived the idea of applying this principle to the arts by coating a piece of copper with varnish or wax and engraving a design in the coating, thus exposing the copper strip in the engraved lines. He did this, and then deposited copper in the design so engraved. Upon removing the coating the design was exposed in relief on the piece of copper. On September 13, 1839, Spencer read a paper before the Polytechnic Institution of Liverpool, which he accompanied with specimens of both electrotypes made by this process and of printing from these electrotypes. The publication of this paper acted like an electric shock upon society. Developing his process, Spencer first used lead as the plastic medium in which to mold printing surfaces, and it is to be noted in this connection that in doing so he anticipated Dr. Albert's lead mold by considerably over three quarters of a century. The next step in developing the electrotyping process, after Spencer had demonstrated the practical application of the electro-chemical deposition of a copper shell on a mold, was made by a Mr. Robert Murray. Mr. Murray was the first to use plumbago, or black-lead, to give the surface of non-metallic bodies electro-conductive properties. He discovered that he could coat a mold of bees-wax with black-lead and deposit thereon a copper shell. This was in 1840. In the same year Smee's battery was invented. This was a marked improvement and was a most important step towards making electrotyping a commercial possibility. Thus in 1840, four hundred years after the probable date of the invention of printing from individual movable cast-metal type, and over forty years after the foundation of electrotyping was laid by Volta, electrotyping, as a practical method of reproducing a commercial typographical printing surface, came into existence. The "whites" or low spots in Palmer's Glyphographs were "built-up" in the wax mold through adding wax by hand, assisted by various ingeniously constructed tools which were heated. After "building-up," the wax was black-leaded and the copper deposition on the surface of the wax mold was obtained. This copper deposit, or shell, was then tinned on the back, backed up with lead, mounted on wood, and trimmed type-high. These processes are the essentials used today in electrotyping. In 1839 the first attempt was made at commercial electrotyping in America. In that year, Joseph A. Adams, a wood-engraver connected with Harper & Bros. in New York, experimented along lines similar to those Spencer had pursued, but using a wood-cut from which to mold. His electrotypes were made by taking an impression from the wood-cut in an alloy of soft metal of which bismuth was probably the chief ingredient, and immersing the metal mold in an ordinary Voltaic battery for the deposition of the copper shell. In making the impression, however, the wood-cut was destroyed so, that this method of making an electrotype was not commercially practical. The first successful commercial electrotyper in America was John W. Wilcox, of Boston. A wood carver named Chandler, told Mr. Wilcox that if he could repeat what Adams of New York had done with a wood-cut in 1839 that he, Chandler, would lend him the necessary wood-cuts for experimental purposes. In less than sixty days in 1846, Mr. Wilcox had put into practical use every essential principle known for the next twenty-five years in electrotyping. In 1855, Mr. Gay of New York first used tin-foil for the purpose of soldering the copper shells to the metal backing. During the same year, a Mr. Adams of Brooklyn, New York, invented the dry-brush black-leading machine. Steven D. Tucker, of New York, developed and patented in 1866 the type of dry-brush black-leading machine which is in common use today. In 1871, Silas P. Knight, of Harper & Bros., New York, invented the wet black-leading process, and in 1872 took out another patent for an improvement on this process. Mr. Knight's method of wet black-leading was not generally adopted by the electrotypers of that time and gradually became almost unknown. Undoubtedly, the cause of this was that the method of dry black-leading was good enough for type and woodcut work. The half-tone had not been invented at that time, and it was only after the invention of the half-tone that a better method of black-leading became necessary. Thirty-seven years after Mr. Knight had successfully used his process of wet black-leading a patent was granted to Frank L. Learman, of Buffalo, New York, for a wet black-leader. Since that time numerous patents have been taken out on different methods of using the wet process, which is universally recognized today as the best method of graphiting the surface of a mold. In 1870, Joseph A. Adams patented a process for covering the surface of the mold after it had been black-leaded with powdered tin. This was for the purpose of quickening the deposition of the copper shell when the molds were in the batteries, and from this undoubtedly came the oxidizing process of coating the surface of the molds with chemical copper invented by Silas Knight, which has long been and is now in use. Perhaps one of the greatest forward steps in the development of electrotyping was made when the plating dynamo was invented. The first adoption of a dynamo in place of Smee's battery took place in 1872. With the Smee type of battery it required from thirty to forty-eight hours to deposit a copper shell thick enough for commercial use. With the invention of the plating dynamo and its improvements, the time of depositing the shell was reduced so that now two hours is the common time that a mold is kept in the tubs or batteries. This quickening of the time required to deposit the shell was one of the most essential features in the development of commercial electrotyping. From the first hand-screw presses, which were successfully used for molding, to the modern high-power, motor-driven, hydraulic presses, for working either in wax or lead, is a far cry. The invention of the half-tone, together with the invention of the modern two-revolution cylinder press which has brought printing into its present state of perfection, made necessary radical improvements in the machinery for making electrotypes. These improvements have been steady in their development, but the fundamental points of the process are practically those which have been in use from the start of commercial electrotyping. ELECTROTYPING BY THE WAX MOLD PROCESS An electrotype is a facsimile printing plate duplicated from an original. The original may be either type, a woodcut, a zinc or a copper etching such as a line-cut or a half-tone, or it may be a combination of type-matter and line-cuts or half-tones. We commonly think of electrotypes as printing plates made of copper, but any metal which can be electrochemically deposited may be used. Because of their wearing qualities and economy, however, copper and nickel are the two metals commercially used for electrotyping. Briefly, an electrotype is made by taking an impression of the original in a plastic substance, thus forming a mold or matrix; depositing copper or nickel on the mold; removing the copper or nickel shell from the mold and backing it with a semi-hard metal; trimming the metal to printing-plate thickness, and bevelling, or blocking on wood, the trimmed plate for printing-press use. In modern practice more than twenty-five different operations are necessary to make a finished electrotype ready for the press. They may be enumerated, as follows: ELECTROTYPING BY THE LEAD MOLD PROCESS Electrotypes made by the genuine Dr. Albert Lead Mold Process are always duplicates of fine-screen half-tones or mezzo-tints used for the highest class of commercial job-work, such as three and four color process or duo-tone printing on paper with a highly glazed surface. The largest press used in lead molding will give a maximum pressure of two thousand tons per square inch on a thirty inch ram hydraulically operated. The weight of this press is over thirty thousand pounds. Add to tbrJar First Page Next Page Prev Page |
Terms of Use Stock Market News! © gutenberg.org.in2025 All Rights reserved.