Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: The Future of Road-making in America by Hulbert Archer Butler

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 263 lines and 37543 words, and 6 pages

With a view to securing scientific facts in reference to the value of road-building materials, the Secretary of Agriculture has established at Washington, D. C., a mechanical and chemical laboratory for testing such material from all parts of the country. Professor L. W. Page, late of Harvard University, is in charge of this laboratory, and has tested many samples of rock without charge to those having the test made. There is, however, no test equal to the actual application of the material to the road itself.

With a view to making more extensive tests than could be done by laboratory work alone, the Director of the Office of Public Road Inquiries has, during the past two years, co?perated with the local authorities in many different states in building short sections of object-lesson roads. In this work it is intended not only to contribute something by way of co?peration on the part of the General Government, but also to secure co?peration on the part of as many different interests connected with the road question as possible. The local community having the road built is most largely interested, and is expected to furnish the common labor and domestic material. The railroad companies generally co?perate, because they are interested in having better roads to and from their railroad stations. They therefore contribute by transporting free or at very low rates the machinery and such foreign material as is needed in the construction of the road. The manufacturers of earth-handling and road-building machinery co?perate by furnishing all needed machinery for the most economical construction of the road, and in many cases prison labor is used in preparing material which finally goes into the completed roadbed. The contribution which the General Government makes in this scheme of co?peration is both actually and relatively small, but it is by means of this limited co?peration that it has been possible to produce a large number of object-lesson roads in different states. These have proved very beneficial, not only in showing the scientific side of the question, but the economical side as well.

In the year 1900 object-lesson roads were built under the direction of the Office of Public Road Inquiries near Port Huron, Saginaw, and Traverse City, Michigan; Springfield, Illinois; and Topeka, Kansas. Since that time the object-lesson roads so built have been extended and duplicated by the local authorities without further aid from the government. The people are so well pleased with the results of these experiments that they are making preparations for additional extensions, aggregating many miles.

During the year 1901 sample object-lesson roads were built on a larger scale in co?peration with the Illinois Central, Lake Shore, and Southern railroad companies, and the National Association for Good Roads in the states of Louisiana, Mississippi, Tennessee, Kentucky, Illinois, New York, North Carolina, South Carolina, Alabama, and Georgia. In all of these cases the co?peration has been very hearty on the part of the state, the county, and the municipality in which the work has been done, and the results have been very satisfactory and beneficial.

Hon. A. H. Longino, governor of Mississippi, in his speech made at the International Good Roads Congress at Buffalo, September 17, 1901, said:

"My friends, the importance of good roads seems to me to be so apparent, so self-evident, that the discussion thereof is but a discussion of truisms. Much as we appreciate railroads, rivers, and canals as means for transportation of the commerce of the country, they are, in my judgment, of less importance to mankind, to the masses of the people, and to all classes of people, than are good country roads.

FOOTNOTES:

GOOD ROADS FOR FARMERS

Poor roads constitute the greatest drawback to rural life, and for the lack of good roads the farmers suffer more than any other class. It is obviously unnecessary, therefore, to discuss here the benefits to be derived by them from improved roads. Suffice it to say, that those localities where good roads have been built are becoming richer, more prosperous, and more thickly settled, while those which do not possess these advantages in transportation are either at a standstill or are becoming poorer and more sparsely settled. If these conditions continue, fruitful farms may be abandoned and rich lands go to waste. Life on a farm often becomes, as a result of "bottomless roads," isolated and barren of social enjoyments and pleasures, and country people in some communities suffer such great disadvantage that ambition is checked, energy weakened, and industry paralyzed.

Good roads, like good streets, make habitation along them most desirable; they economize time and force in transportation of products, reduce wear and tear on horses, harness and vehicles, and enhance the market value of real estate. They raise the value of farm lands and farm products, and tend to beautify the country through which they pass; they facilitate rural mail delivery and are a potent aid to education, religion, and sociability. Charles Sumner once said: "The road and the schoolmaster are the two most important agents in advancing civilization."

The difference between good and bad roads is often equivalent to the difference between profit and loss. Good roads have a money value to farmers as well as a political and social value, and leaving out convenience, comfort, social and refined influences which good roads always enhance, and looking at them only from the "almighty dollar" side, they are found to pay handsome dividends each year.

People generally are beginning to realize that road-building is a public matter, and that the best interests of American agriculture and the American people as a whole demand the construction of good roads, and that money wisely expended for this purpose is sure to return.

Road-making is perfected by practice, experience, and labor. Soils and clays, sand and ores, gravels and rocks, are transformed into beautiful roads, streets, and boulevards, by methods which conform with their great varieties of characters and with nature's laws. The art of road-building depends largely for its success upon being carried on in conformity with certain general principles.

It is necessary that roads should be hard, smooth, comparatively level, and fit for use at all seasons of the year; that they should be properly located, or laid out on the ground, so that their grades may be such that animate or inanimate power may be applied upon them to the best advantage and without great loss of energy; that they should be properly constructed, the ground well drained, the roadbed graded, shaped, and rolled, and that they should be surfaced with the best material procurable; that they should be properly maintained or kept constantly in good repair.

All the important roads in the United States can be and doubtless will be macadamized or otherwise improved in the not distant future. This expectation should govern their present location and treatment everywhere. Unless changes are made in the location of the roads in many parts of this country it would be worse than folly to macadamize them. "Any costly resurfacing of the existing roads will fasten them where they are for generations," says General Stone. The chief difficulty in this country is not with the surface, but with the steep grades, many of which are too long to be reduced by cutting and filling on the present lines, and if this could be done it would cost more in many cases than relocating them.

Many of our roads were originally laid out without any attention to general topography, and in most cases followed the settler's path from cabin to cabin, the pig trail, or ran along the boundary lines of the farms regardless of grades or direction. Most of them remain today where they were located years ago, and where untold labor, expense, and energy have been wasted in trying to haul over them and in endeavors to improve their deplorable condition.

The great error is made of continuing to follow these primitive paths with our public highways. The right course is to call in an engineer and throw the road around the end or along the side of steep hills instead of continuing to go over them, or to pull the road up on dry solid ground instead of splashing through the mud and water of the creek or swamp. Far more time and money have been wasted in trying to keep up a single mile of one of these "pig-track" surveys than it would take to build and keep in repair two miles of good road.

Another and perhaps greater error is made by some persons in the West who continue to lay out their roads on "section lines." These sections are all square, with sides running north, south, east, and west. A person wishing to cross the country in any other than these directions must necessarily do so in rectangular zigzags. It also necessitates very often the crossing and recrossing of hills and valleys, which might be avoided if the roads had been constructed on scientific principles.

In the prairie state of Iowa, for example, where roads are no worse than in many other states, there is a greater number of roads having much steeper grades than are found in the mountainous republic of Switzerland. In Maryland the old stagecoach road or turnpike running from Washington to Baltimore makes almost a "bee line," regardless of hills or valleys, and the grades at places are as steep as ten or twelve per cent, where by making little detours the road might have been made perfectly level, or by running it up the hills less abruptly the grade might have been reduced to three or four per cent, as is done in the hilly regions of many parts of this and other countries. Straight roads are the proper kind to have, but in hilly countries their straightness should always be sacrificed to obtain a level surface so as to better accommodate the people who use them.

Graceful and natural curves conforming to the lay of the land add beauty to the landscape, besides enhancing the value of property. Not only do level, curved roads add beauty to the landscape and make lands along them more valuable, but the horse is able to utilize his full strength over them; furthermore, a horse can pull only four-fifths as much on a grade of two feet in one hundred feet, and this gradually lessens until with a grade of ten feet in one hundred feet he can draw but one-fourth as much as he can on a level road.

All roads should therefore wind around hills or be cut through instead of running over them, and in many cases the former can be done without greatly increasing the distance. To illustrate, if an apple or pear be cut in half and one of the halves placed on a flat surface, it will be seen that the horizontal distance around from stem to blossom is no greater than the distance over between the same points.

The wilfulness of one or two private individuals sometimes becomes a barrier to traffic and commerce. The great drawback to the laying out of roads on the principle referred to is that of the necessity, in some cases, of building them through the best lands, the choicest pastures and orchards, instead, as they do now, of cutting around the farm line or passing through old worn-out fields or over rocky knolls. But if farmers wish people to know that they have good farms, good cattle, sheep, or horses, good grain, fruit, or vegetables, they should let the roads go through the best parts of the farms.

The difference in length between a straight road and one which is slightly curved is less than one would imagine. Says Sganzin: "If a road between two places ten miles apart were made to curve so that the eye could see no farther than a quarter of a mile of it at once, its length would exceed that of a perfectly straight road between the same points by only about one hundred and fifty yards." Even if the distance around a hill be much greater, it is often more economical to construct it that way than to go over and necessitate the expenditure of large amounts of money in reducing the grade, or a waste of much valuable time and energy in transporting goods that way. Gillespie says "that, as a general rule, the horizontal length of a road may be advantageously increased to avoid an ascent by at least twenty times the perpendicular height which is thus to be avoided--that is, to escape a hill one hundred feet high it would be proper for the road to make such a circuit as would increase its length two thousand feet." The mathematical axiom that "a straight line is the shortest distance between two points" is not, therefore, the best rule to follow in laying out a road; better is the proverb that "the longest way round is the shortest way home."

The grade is the most important factor to be considered in the location of roads. The smoother the road surface, the less the grade should be.

Whether the road be constructed of earth, stone, or gravel, steep grades should always be avoided if possible. They become covered at times with coatings of ice or slippery soil, making them very difficult to ascend with loaded vehicles, as well as dangerous to descend. They allow water to rush down at such a rate as to wash great gaps alongside or to carry the surfacing material away. As the grade increases in steepness either the load has to be diminished in proportion or more horses or power attached. From Gillespie we find that if a horse can draw on a level one thousand pounds, on a rise of--

It is therefore seen that when the grades are 1 foot in 44 feet, or 120 feet to the mile, a horse can draw only three-fourths as much as he can on a level; where the grade is 1 foot in 24 feet, or 220 feet to the mile, he can draw only one-half as much, and on a ten per cent grade, or 520 feet to the mile, he is able to draw only one-fourth as much as on a level road.

As a chain is no stronger than its weakest link, just so the greatest load which can be hauled over a road is the load which can be hauled through the deepest mud hole or up the steepest hill on that road. The cost of haulage is, therefore, necessarily increased in proportion to the roughness of the surface or steepness of the grade. It costs one and one-half times as much to haul over a road having a five per cent grade and three times as much over one having a ten per cent grade as on a level road. As a perfectly level road can seldom be had, it is well to know the steepest allowable grade. If the hill be one of great length, it is sometimes best to have the lowest part steepest, upon which the horse is capable of exerting his full strength, and to make the slope more gentle toward the summit, to correspond with the continually decreasing strength of the fatigued animal.

So far as descent is concerned, a road should not be so steep that the wagons and carriages cannot be drawn down it with perfect ease and safety. Sir Henry Parnell considered that when the grade was no greater than one foot in thirty-five feet, vehicles could be drawn down it at a speed of twelve miles an hour with perfect safety. Gillespie says:

"It has been ascertained that a horse can for a short time double his usual exertion; also, that on the best roads he exerts a pressure against his collar of about one thirty-fifth of the load. If he can double his exertion for a time, he can pull one thirty-fifth more, and the slope which would force him to lift that proportion would be, as seen from the above table, one of one in thirty-five, or about a three per cent grade. On this slope, however, he would be compelled to double his ordinary exertion to draw a full load, and it would therefore be the maximum grade." Mr. Isaac B. Potter, an eminent authority upon roads, says:

"Dirty water and watery dirt make bad going, and mud is the greatest obstacle to the travel and traffic of the farmer. Mud is a mixture of dirt and water. The dirt is always to be found in the roadway, and the water, which comes in rain, snow, and frost, softens it; horses and wagons and narrow wheel tires knead it and mix it, and it soon gets into so bad a condition that a fairly loaded wagon cannot be hauled through it.

"We cannot prevent the coming of this water, and it only remains for us to get rid of it, which can be speedily done if we go about it in the right way. Very few people know how great an amount of water falls upon the country road, and it may surprise some of us to be told that on each mile of an ordinary country highway three rods wide within the United States there falls each year an average of twenty-seven thousand tons of water. In the ordinary country dirt road the water seems to stick and stay as if there was no other place for it, and this is only because we have never given it a fair opportunity to run out of the dirt and find its level in other places. We cannot make a hard road out of soft mud, and no amount of labor and machinery will make a good dirt road that will stay good unless some plan is adopted to get rid of the surplus water. Water is a heavy, limpid fluid, hard to confine and easy to let loose. It is always seeking for a chance to run down a hill; always trying to find its lowest level."

An essential feature of a good road is good drainage, and the principles of good drainage remain substantially the same whether the road be constructed of earth, gravel, shells, stones, or asphalt. The first demand of good drainage is to attend to the shape of road surface. This must be "crowned," or rounded up toward the center, so that there may be a fall from the center to the sides, thus compelling the water to flow rapidly from the surface into the gutters which should be constructed on one or both sides, and from there in turn be discharged into larger and more open channels. Furthermore, it is necessary that no water be allowed to flow across a roadway; culverts, tile, stone, or box drains should be provided for that purpose.

In addition to being well covered and drained, the surface should be kept as smooth as possible; that is, free from ruts, wheel tracks, holes, or hollows. If any of these exist, instead of being thrown to the side the water is held back and is either evaporated by the sun or absorbed by the material of which the road is constructed. In the latter case the material loses its solidity, softens and yields to the impact of the horses' feet and the wheels of vehicles, and, like the water poured upon a grindstone, so the water poured on a road surface which is not properly drained assists the grinding action of the wheels in rutting or completely destroying the surface. When water is allowed to stand on a road the holes and ruts rapidly increase in number and size; wagon after wagon sinks deeper and deeper, until the road finally becomes utterly bad, and sometimes impassable, as frequently found in many parts of the country during the winter season.

Road drainage is just as essential to a good road as farm drainage is to a good farm. In fact, the two go hand in hand, and the better the one the better the other, and vice versa. There are thousands of miles of public roads in the United States which are practically impassable during some portion of the year on account of bad drainage, while for the same reason thousands of acres of the richest meadow and swamp lands lie idle from year in to year out.

The wearing surface of a road must be in effect a roof; that is, the section in the middle should be the highest part and the traveled roadway should be made as impervious to water as possible, so that it will flow freely and quickly into the gutters or ditches alongside. The best shape for the cross section of a road has been found to be either a flat ellipse or one made up of two plane surfaces sloping uniformly from the middle to the sides and joined in the center by a small, circular curve. Either of these sections may be used, provided it is not too flat in the middle for good drainage or too steep at the gutters for safety. The steepness of the slope from the center to the sides should depend upon the nature of the surface, being greater or less according to its roughness or smoothness. This slope ought to be greatest on earth roads, perhaps as much in some cases as one foot in twenty feet after the surface has been thoroughly rolled or compacted by traffic. This varies from about one in twenty to one in thirty on a macadam road, to one in forty or one in sixty on the various classes of pavements, and for asphalt sometimes as low as one in eighty.

Where the road is constructed on a grade or hill the slope from the center to the sides should be slightly steeper than that on the level road. The best cross section for roads on grades is the one made up from two plane surfaces sloping uniformly from the center to the sides. This is done so as to avoid the danger of overturning near the side ditches, which would necessarily be increased if the elliptical form were used. The slope from the center to the sides must be steep enough to lead the water into the side ditches instead of allowing it to run down the middle of the road. Every wheel track on an inclined roadway becomes a channel for carrying down the water, and unless the curvature is sufficient these tracks are quickly deepened into water courses which cut into and sometimes destroy the best improved road.

Unfortunately farmers and road masters have a fixed idea that one way to prevent hills, long and short, from washing is to heap upon them quantities of those original tumular obstructions known indifferently as "thank-you-ma'ams," "breaks," or "hummocks," and the number they can squeeze in upon a single hill is positively astonishing. Quoting Mr. Isaac B. Potter:

"Side ditches are necessary because the thousands of tons of water which fall upon every mile of country road each year, in the form of rain or snow, should be carried away to some neighboring creek or other water channel as fast as the rain falls and the snow melts, so as to prevent its forming mud and destroying the surface of the road. When the ground is frozen and a heavy rain or sudden thaw occurs, the side ditch is the only means of getting rid of the surface water; for no matter how sandy or porous the soil may be, when filled with frost it is practically water-tight, and the water which falls or forms on the surface must either remain there or be carried away by surface ditches at the sides of the road.

"A side ditch should have a gradually falling and even grade at the bottom, and broad, flaring sides to prevent the caving in of its banks. It can be easily cleared of snow, weeds, and rubbish; the water will run into it easily from each side, and it is not dangerous to wagons and foot travelers. It is therefore a much better ditch than the kind of ditch very often dug by erosion along the country roadside."

Where the road is built on a grade some provision should be made to prevent the wash of the gutters into great, deep gullies. This can be done by paving the bottom and sides of the gutters with brick, river rocks, or field stone. In order to make the flow in such side ditches as small as possible it is advisable to construct outlets into the adjacent fields or to lay underground pipes or tile drains with openings into the ditches at frequent intervals.

The size of side ditches should depend upon the character of the soil and the amount of water they are expected to carry. If possible they should be located three feet from the edge of the traveled roadway, so that if the latter is fourteen feet wide there will be twenty feet of clear space between ditches.

The bottom of the ditch may vary in width from three to twelve inches, or even more, as may be found necessary in order to carry the largest amount of water which is expected to flow through it at any one time. Sometimes the only ditches necessary to carry off the surface water are those made by the use of the road machines or road graders. The blade of the machine may be set at any desired angle, and when drawn along by horses, cuts into the surface and moves the earth from the sides toward the center, forming gutters alongside and distributing the earth uniformly over the traveled way. Such gutters are liable to become clogged by brush, weeds, and other d?bris, or destroyed by passing wagons, and it is therefore better, when the space permits, to have the side ditches above referred to, even if the road be built with a road machine.

In order to have a good road it is just as necessary that water should not be allowed to attack the substructure from below as that it should not be permitted to percolate through it from above. Especially is the former provision essential in cold climates, where, if water is allowed to remain in the substructure, the whole roadway is liable to become broken up and destroyed by frost and the wheels of vehicles. Therefore, where the road runs through low wet lands or over certain kinds of clayey soils, surface drainage is not all that is necessary. Common side drains catch surface water and surface water only. Isaac Potter says:

"Many miles of road are on low, flat lands and on springy soils, and thousands of miles of prairie roads are, for many weeks in the year, laid on a wet subsoil. In all such cases, and, indeed, in every case where the nature of the ground is not such as to insure quick drainage, the road may be vastly benefited by under drainage. An under drain clears the soil of surplus water, dries it, warms it, and makes impossible the formation of deep, heavy, frozen crusts, which are found in every undrained road when the severe winter weather follows the heavy fall rains. This crust causes nine-tenths of the difficulties of travel in the time of sudden or long-continued thaws.

"Roads constructed over wet undrained lands are always difficult to manage and expensive to maintain, and they are liable to be broken up in wet weather or after frosts. It will be much cheaper in the long run to go to the expense of making the drainage of the subjacent soil and substructure as perfect as possible. There is scarcely an earth road in the United States which cannot be so improved by surface or subdrainage as to yield benefits to the farmers a hundred times greater in value than the cost of the drains themselves.

"Under drains are not expensive. On the contrary, they are cheap and easily made, and if made in a substantial way and according to the rules of common sense a good under drain will last for ages. Use the best tools and materials you can get; employ them as well as you know how, and wait results with a clear conscience. Slim fagots of wood bound together and laid lengthwise at the bottom of a carefully graded drain ditch will answer fairly well if stone or drain tile cannot be had, and will be of infinite benefit to a dirt road laid on springy soils."

Subdrains should be carefully graded with a level at the bottom to a depth of about four feet, and should have a continuous fall throughout their entire length of at least six inches for each one hundred feet in length. If tile drains cannot be had, large, flat stones may be carefully placed so as to form a clear, open passage at the bottom for the flow of the water. The ditch should then be half filled with rough field stones, and on these a layer of smaller stones or gravel and a layer of sod, hay, gravel, cinders, or straw, or, if none of these can be had, of soil. If field stones or drain tile cannot be procured, satisfactory results may be attained by the use of logs and brush.

If there be springs in the soil which might destroy the stability of the road, they should, if possible, be tapped and the water carried under or along the side until it can be turned away into some side channel. Such drains may be made of bundles of brush, field stones, brick, or drain tiles. They should be so protected by straw, sod, or brush as to prevent the soil from washing in and clogging them.

Most of the roads in this country are of necessity constructed of earth, while in a few of the richer and more enterprising communities the most important thoroughfares are surfaced with gravel, shell, stones, or other materials. Unless some new system for the improvement of public roads is adopted, the inability of rural communities to raise funds for this purpose will necessarily cause the construction of hard roads to be very gradual for some time to come. Until this new system is adopted the most important problem will be that of making the most of the roads which exist, rather than building new ones of specially prepared materials. The natural materials and the funds already available must be used with skill and judgment in order to secure the best results. The location, grades, and drainage having been treated in the preceding pages, the next and most important consideration is that of constructing and improving the various kinds of roads.

Of earth roads, as commonly built, it suffices to say that their present conditions should not be tolerated in communities where there are any other materials with which to improve them. Earth is the poorest of all road materials, aside from sand, and earth roads require more attention than any other kind of roads, and as a rule get less. At best, they possess so many defects that they should have all the attention and care of which their condition is susceptible. With earth alone, however, a very passable road can be made, provided the principles of location, drainage, and shape of surface, together with that of keeping the surface as smooth and firm as possible by rolling, be strictly adhered to. In fact a good earth road is second to none for summer travel and superior to many of the so-called macadam or stone roads.

"Water is the great road destroyer," and too much attention cannot be given to the surface and subdrainage of earth roads. The material of which their surfaces are composed is more susceptible to the action of water and more easily destroyed by it than any other highway material. Drainage alone will often change a bad road into a good one, while on the other hand the best road may be destroyed by the absence of good drains.

Add to tbrJar First Page Next Page Prev Page

Back to top Use Dark Theme