|
Read Ebook: Industrial Arts Design A Textbook of Practical Methods for Students Teachers and Craftsmen by Varnum William H William Harrison
Font size: Background color: Text color: Add to tbrJar First Page Next PageEbook has 791 lines and 56980 words, and 16 pagesurniture and come within the possible developments of this division. Plate 3 illustrates the last division of evolution and concerns itself with the application of design to the surface of the otherwise complete structure. This division is commonly called applied surface design or decorative design. It is readily seen that this division should be considered after the structure has been carefully planned. To separate this division from the period of structural or contour enrichment we will call it Surface Enrichment. It may be seen from the foregoing discussion that a design may be carried through the following steps: Blocking in the enclosing lines of the design, as at Figure B, Plate 2, adding to this whatever may be needed for structural purposes, keeping the lines as nearly vertical and horizontal as possible; Enriching and varying the outline or contour. It is well for elementary wood workers to use this step with extreme caution, while less reserve is necessary in clay and metal; After careful consideration in determining the need of additional decoration, the last step, surface enrichment, should be used. The following chapters will take up these steps in the order stated above. The ideal method of developing the principles set forth in this chapter includes correlated activity in the shop by working out the project in the required material. As the technic of the individual improves, the larger range of design principles will be found to accompany and parallel his increasing skill. REVIEW QUESTIONS THE PRIMARY MASS AND ITS PROPORTIONS Upon first observing a building, one seldom notices details of structure. He sees the large mass as it is silhouetted against the sky. Nearer approach discloses mouldings, cornices, and doorways; while careful analytical study shows the technical points of construction. The architect, in his original planning, thinks in terms of masses, widths, and heights, disregarding at first the details and color. As architecture stands for parent design principles and represents some of the world's best examples of composition and design, industrial design should be based upon the best examples of architectural design. To a certain degree, also, the methods of the industrial arts designer should be those of the architect. It is necessary to think at first of our problem as a single mass or solid, bounded by enclosing dimensions of width, height, and thickness. Details like a mirror, handles, brackets, or knobs may project outside of this mass, but for the time being, they may be disregarded. Figure B, Plate 2, shows this manner of thinking, and will enable us to regard the problem as a big, simple mass so that the entire object, unobstructed by small details, may be seen. Figures 1 and 4, Plate 4, are examples of horizontal masses with the dark lines indicating the dominance of the horizontal lines and planes. The shelter house contains a long bench, making necessary the long horizontal lines of the building. The calendar holder has to be a horizontal mass because of the restrictions imposed by the shape of the calendar pad. Figures 2 and 3 are vertical masses. The vase is intended for tall flowers, while the chair, as has already been mentioned, must meet the needs of a single person. Utility and service then have been found to give the primary mass a given direction or dominance. The designer now represents this mass by drawing a rectangle similar to the block outline of Figure B, Plate 2. It is now necessary to see if the foundation stones of this rectangle have been laid correctly; in other words, to test the proportions of the primary vertical or horizontal mass. Certain other ratios are weak and indeterminate, showing a lack of clear thinking. They are like people with no definite or cleancut ideas upon a subject they discuss. Examples in this class show ratios of two to two and one-eighth, or three to three and one-fourth, neither positively square nor frankly rectangular. They hide around the corner, as it were, waiting to be anything. Figure 5, Plate 5, is an example of unsatisfactory proportionate ratios of the primary mass. The blotting tablet is nearly square, while the candlestick and sconce, which should have been designed with strongly vertical masses, lack the type of definite thinking that results in a decided vertical dimension. Disregarding the improvement in technic, Figure 6 shows problems designed with a definite knowledge of proportion. The metal objects are refined in their dimensions, and pleasing to the eye. Tests have been made with the idea of determining what the eye considers perfectly natural and agreeable proportion. This has been found to be the ratio of two to three. Consequently, it is clear why Figure 6 shows objects more pleasing than those in Figure 5. It may be felt that too much space is being given to this subject of proportion. It should be remembered, however, that the industrial arts are intimately associated with daily life and that unless proportions are pleasing to our aesthetic sense, many articles of common use shortly become intolerable. This preliminary portion of the designer's task has been given to thinking out the problem and drawing one rectangle. There is a tendency to start the design by pushing the pencil over the paper with a forlorn hope that a design may be evolved with little mental effort. This should be regarded as illogical and unworthy of the desired end. A rectangle of the most prominent surface of the problem, based upon the desired service of the project, and the best proportions which our knowledge of design and understanding of the limitations of construction will permit, should be the final result of the first study. From now on through the succeeding steps, the details of the problem will become more and more clear, as the technical limitations of the tools and materials governing the designer's ideas and controlling and shaping the work are better understood, until all governing factors become crystallized in the form of a working drawing or model. This is a strictly professional practice as illustrated in Figure 7, which shows the skilled Rookwood potter developing a vase form, the definite embodiment of correct thinking in terms of the material which is constantly before him. SUMMARY OF RULES REVIEW QUESTIONS HORIZONTAL MAJOR DIVISIONS OF THE PRIMARY MASS In the second chapter we discussed the nature of the primary mass in its relation to the intended service or duty it has to perform. It was found that the demands of service usually cause the primary mass to be designed with either a strong vertical or horizontal tendency. It now becomes imperative to carry the designing processes still further and divide the vertical or horizontal primary mass into parts or divisions, demanded either by structural requirements or because the appearance of the object would be materially improved by their presence. This latter point is sometimes referred to as the aesthetic requirement of the problem. There are two simple types of divisions, those crossing the primary mass horizontally and those crossing the primary mass in a vertical direction. This chapter will be limited to the subject of horizontal divisions. If a city purchases a piece of land for park purposes, presumably a landscape architect is assigned the task of laying out the paths and drives. He does this by crossing his plan at intervals with lines to represent paths connecting important points. Under favorable conditions the architect is free to curve his path to suit his ideas. He has considerable freedom in selecting his design but the paths or roads must dip and curve in sympathy with the contour of the land and in accord with the aesthetic requirements. While the landscape designer has a broad latitude in his treatment of land divisions, the industrial designer or architect is restricted, on the other hand, by the structural requirements of the object and by his materials. He must cross his spaces or areas by horizontal shelves, or rails, or bands of metal that hold the structure together. As architecture is of fundamental importance in industrial design, let us see what the architect has in mind in designing a structure. The architect has the surface of the ground with which to start. This gives him a horizontal line as the base of his building. He considers it of major importance in his design. We find him crossing the front of his building with horizontal moulding or long bands of colored brick, paralleling the base line and otherwise interestingly dividing the vertical face of the front and sides. His guide is the bottom line of his primary mass or the line of the ground which binds the different parts of the building into a single unit. It can be readily seen that if he shifted the position of his mouldings up or down with the freedom of the landscape architect in locating his roads, he would not be planning his horizontal divisions in sympathy with the structural requirements of his primary mass. These horizontal divisions or lines have a tendency to give apparent added length to an object. Thus by their judicious use a designer may make a building or room look longer than it really is. Plate 6 represents a concrete example of the methods to be used in designing the horizontal divisions of a piano bench. The steps may be divided as follows: The height of a piano bench may be determined either from measurement of a similar bench or from one of the books on furniture design now on the market. The scale of one inch or one and one-half inches to the foot may be adopted. Two horizontal lines should be drawn, one for the bottom and one for the top of the bench. The distance between these lines we will arbitrarily fix at twenty inches. Many objects are designed within rectangles which enclose their main or over-all proportions. With this in view, and keeping in mind the width of the bench necessary to the accommodation of two players and the requirements of a well proportioned primary mass , the lines are now drawn completing the rectangular boundaries of the primary mass. The limitations of service and the restrictions of good designing give the width of the primary mass so designed as three feet and two inches, with a ratio of height to length of five to eight and one-half. It is simpler to design first the most prominent face of the object to be followed by other views later in the designing process. The last step is the designing of the side view in relation to the front view. This enables the designer to comprehend the project as a whole. It is strongly urged that the final or shop drawing be of full size. In more elaborate designs the finer proportions are lost in the process of enlargement from a small sketch, often hurriedly executed in the shop. Again much time is lost by necessary enlargement, whereas a full size curved detail may be quickly transferred to wood by carbon paper or by holes pricked in the paper. It is not expensive or difficult to execute full size drawings; it is in accord with shop practice and the custom should be encouraged and followed on all possible occasions. See Figure 102a. The process of designing round objects is identical to that just described as illustrated by the low round bowl in Plate 7. It should be designed in a rectangle of accepted proportions. Rule 1b. The primary mass may have excellent proportions and yet the vase or bowl may remain devoid of interest. It may be commonplace. As will shortly be shown, the rules governing horizontal divisions serve as a check on the commonplace. A horizontal division generally marks the point where the outward swell of the vase contour reaches its maximum width. If this widest point in the primary mass is pleasingly located between the top and bottom of a vase form the contour will be found satisfactory. ANALYSIS OF HORIZONTAL SPACE DIVISIONS Figure 8 illustrates two horizontal divisions in wood construction and also the freedom of choice as to exact proportions. The eye will be found a good judge of the proper spacings subject to the limitations already mentioned. It is best to keep the design within the limits of two horizontal space divisions in designing cylindrical clay forms, particularly in the elementary exercises. Enough variety will be found to make pleasing arrangements, and the technical results obtained by two divisions are much better than those obtained from a greater number of divisions. Figures 14, 15, and 16, Plate 9, are clay forms with the dominance placed in either the upper or lower portion of the primary mass. Figure 13 has been used to illustrate the fact that horizontal space division principles are applicable to any material. The horizontal divisions in Figure 13 are due to structural needs. A horizontal line carries this division across to Figure 14, a clay vase. The horizontal division line now becomes the one which marks the widest part of the vase. It gives the same relation between the top and bottom horizontal spaces as in Figure 13. It marks an aesthetic point in the design of the vase, or a variation of the contour, introduced by reason of its effect upon the beauty of the vase, not called for by the needs of actual service. The horizontal subdivisions in metal are usually made for service. Figures 17, 18, and 19, Plate 10, are examples of such divisions. The location of the clock face in Figure 18 calls for the placing of its horizontal axis in accordance with Rule 2a. The lamp in Figure 19 shows an instance where the entire design once divided by Rule 2a, may be again subdivided into a similar series of divisions. This arrangement is quite similar to the system of repetitions seen in Figure 12 and termed "echoing" the original divisions. As a restriction against loss of unity it is necessary to group all of the minor horizontal divisions into a system of two or three large horizontal divisions. Referring to Rule 2b, it is seen that when three divisions are used, it becomes the practice to accentuate the center section by making it larger. This arrangement is designed to give weight to the center portion and by this big stable division to hold the other subdivisions together and in unity. It is suggested that it is desirable to keep clay forms within the limitations of two divisions. Rectangular posts, pedestals, and other vertical forms in cement may be developed by the application of Rule 2a or 2b, if care is taken to group all minor divisions well within the limitations of these rules. The statement just made in reference to simplified groupings is illustrated in the candlestick and cup in Figures 20 and 21, Plate 10. The construction based upon the three functions performed by the cup, the handle, and the base, suggests the use of these horizontal divisions. The minor curves have been subordinated to, and kept within, these three divisions. The final result gives a distinct feeling of unity impossible under a more complex grouping. The Greek column will afford an architectural illustration of a similar grouping system. Figure 24 shows a low bowl with a compass curve used in designing the contour. This has brought the widest part of the design in the exact center of the bowl which makes it commonplace. In addition to this the top and bottom are of the same width, lacking variety in this respect. Correction is readily made by applying a freehand curve to the contour, raising or lowering the widest point , at the same time designing the bottom either larger or smaller than the top. INSTRUCTION SHEET Plate 7 is a sheet suggestive of the application of Rules 1a, 1b, 2a, and 2b, with an indication of the type of problem to be required. The steps of the designing processes in either wood , clay , or metal , are summarized as follows: SUMMARY OF DESIGN STEPS Construction of the rectangle representing the vertical or horizontal character of the primary mass with desirable proportions. It is better to select a typical view , preferably a front elevation. Subdivide this rectangle into two or three structural sections; horizontal in character. Make two or three trial freehand sketches for varied proportions and select the most pleasing one in accordance with Rules 1a, 1b, 2a, and 2b. Dimension and otherwise prepare the drawing for shop purposes. Construct the project. SUGGESTED PROBLEMS Design a nasturtium bowl, applying Rules 1a, 1b, 2a. Design a writing table 2 feet 6 inches high with three horizontal divisions. SUMMARY OF RULES REVIEW QUESTIONS VERTICAL MAJOR DIVISIONS OF THE PRIMARY MASS Add to tbrJar First Page Next Page |
Terms of Use Stock Market News! © gutenberg.org.in2025 All Rights reserved.