Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: Experiments on Animals by Paget Stephen Lister Joseph Baron Author Of Introduction Etc

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 1293 lines and 125675 words, and 26 pages

He found also, by experiments, that the coagulation of the blood in the tube could be prevented by filling one part of the tube with a saturated solution of sodium carbonate. The tube, thus prepared, was connected with the artery by a fine cannula, exactly fitting the artery. With this instrument, Poiseuille was able to obtain results far more accurate than those of Hales, and to observe the diverse influences of the respiratory movements on the blood-pressure. He sums up his results in these words:--

And he adds, in a footnote:--

"When I say that this force is the same over the whole course of the arterial system, I do not mean to deny that it must needs be modified at certain points of this system, which present a special arrangement, such as the anastomosing arches of the mesentery, the arterial circle of Willis, etc."

Later, in 1835, he published a very valuable memoir on the movement of the blood in the capillaries under different conditions of heat, cold, and atmospheric pressure.

"La circulation du sang est un des sujets pour lesquels la m?decine a le plus besoin de s'?clairer de la physiologie, et o? celle-ci ? son tour tire le plus de lumi?re des sciences physiques. Ces derni?res ann?es sont marqu?es par deux grands progr?s qui ouvrent aux recherches ? venir des horizons nouveaux: en Allemagne, l'introduction des proc?d?s graphiques dans l'?tude du mouvement du sang; en France, la d?monstration de l'influence du syst?me nerveux sur la circulation p?riph?rique. Cette derni?re d?couverte, que nous devons ? M. Cl. Bernard, et qui depuis dix ans a donn? tant d'impulsion ? la science, montre mieux que toute autre combien la physiologie est indispensable ? la m?decine, tandis que les travaux allemands ont bien fait ressortir l'importance des connaissances physiques dans les ?tudes m?dicales."

Marey's sphygmograph was not the first instrument of its kind. There had been, before it, H?risson's sphygmometer, Ludwig's kymographion, and the sphygmographs of Volckmann, King, and Vierordt. But, if one compares a Vierordt tracing with a Marey tracing, it will be plain that Marey's results were far advanced beyond the useless "oscillations isochrones" recorded by Vierordt's instrument.

Beside this improved sphygmograph, Chauveau and Marey also invented the cardiograph, for the observation of the blood-pressure within the cavities of the heart. Their cardiograph was a set of very delicate elastic tambours, resting on the heart, or passed through fine tubes into the cavities of the heart, and communicating impulses to levers with writing-points. These writing-points, touching a revolving cylinder, recorded the variations of the endocardial pressure, and the duration of the auricular and ventricular contractions.

"On peut s'assurer de l'innocuit? de ce premier temps de l'exp?rience en examinant l'animal, qui n'est nullement troubl?, qui marche et mange comme de coutume. En comptant le chiffre du pouls, on trouve quelquefois une l?g?re acc?leration, surtout dans les premiers instants; mais les mouvements du coeur sont toujours r?guliers, et donnent, ? l'auscultation, des bruits d'un caract?re normal."

It is impossible here to describe the subsequent study of those more abstruse problems that the older physiologists had not so much as thought of: the minutest variations of the blood-pressure, the multiple influences of the nervous system on the heart and blood-vessels, the relations between blood-pressure and secretion, the automatism of the heart-beat, the influence of gravitation, and other finer and more complex issues of physiology. But, even if one stops at Marey's book, now more than forty years old, there is an abundant record of good work, from the discovery of the circulation to the invention of the sphygmograph.

THE LACTEALS

It is to be noted that Asellius and Pecquet, both of them, made their discoveries as it were by chance. Unless digestion were going on, the lacteals would be empty and invisible; and, on the dead body, lacteals, receptaculum, and thoracic duct would all be empty. For these reasons, it cost a vast number of experiments to prove the existence, and to discover the course, of these vessels. Once found in living animals, they could be injected and dissected in the dead body; but they had been overlooked by Vesalius and the men of his time.

"Up to this point, we have seen English, Italians, and French working together, with more or less success and genius, to trace the true ways of blood and chyle: there is yet one field of work to open up, the lymphatics of the body. The chief honour here belongs, without doubt, to the Swede Rudbeck, though the Dane Bartholin has disputed it with him, with equal acrimony and injustice."

THE GASTRIC JUICE

"The true experimental study of digestion is of comparatively recent date; the ancients were content to find comparisons, more or less happy, with common facts. Thus, for Hippocrates, digestion was a 'coction': for Galen, a 'fermentation,' as of wine in a vat. In later times, van Helmont started this comparison again: for him, digestion was a fermentation like that of bread: as the baker, having kneaded the bread, keeps a little of the dough to leaven the next lot kneaded, so, said van Helmont, the intestinal canal never completely empties itself, and the residue that it keeps after each digestion becomes the leaven that shall serve for the next digestion.

After R?aumur, the Abb? Spallanzani made similar observations on many other animals, including carnivora. He showed that even in the gallinaceae there was dissolution of food, not mere trituration: and observed how after death the gastric fluid may under certain conditions act on the walls of the stomach itself.

"Henceforth the experimental method had cut the knot of the question raised by the theories of Borelli and Valisnieri: digestion could no longer be accounted anything but a dissolution of food by the fluid of the stomach, the gastric juice. But men had still to understand this gastric juice, and to determine its nature and mode of action. Nothing could be more contradictory than the views on this matter. Chaussier and Dumas, of Montpellier, regarded the gastric juice as of very variable composition, one time alkaline, another acid, according to the food ingested. Side by side with these wholly theoretical opinions, certain results of experiments had led to ideas just as erroneous, for want of rigorous criticism of methods; it was thus that Mont?gre denied the existence of the gastric juice as a special fluid; what men took for gastric juice, he said, was nothing but the saliva turned acid in the stomach. To prove his point, he made the following experiment:--He masticated a bit of bread, then put it out on a plate; it was at first alkaline, then at the end of some time it became acid. In those days this experiment was a real embarrassment to the men who believed in the existence of a special gastric juice: we have now no need to refute it.

"These few instances suffice to show how the physiologists were unsettled as to the nature and properties of the gastric juice. Then the Academy had the happy idea of proposing digestion as a subject for a prize. Tiedemann and Gmelin in Germany, Leuret and Lassaigne in France, submitted works of equal merit, and the Academy divided the prize between them. The work of Tiedemann and Gmelin is of especial interest to us on account of the great number of their experiments, from which came not only the absolute proof of the existence of the gastric juice, but also the study of the transformation of starch into glucose. Thus the theory of digestion entered a new phase: it was finally recognised, at least for certain substances, that digestion is not simply dissolution, but a true chemical transformation."

In 1825 Dr. William Beaumont, a surgeon in the United States Army, began his famous experiments on Alexis St. Martin, a young Canadian travelling for the American Fur Company, who was shot in the abdomen on 6th June 1822, and recovered, but was left with a permanent opening in his stomach. Since the surgery of those days did not favour an operation to close this fistula, Dr. Beaumont took St. Martin into his service, and between 1825 and 1833 made a vast number of experiments on him. These he published, and they were of great value. But it is to be noted that the ground had been cleared already, fifty years before, by R?aumur and Spallanzani:--

Further, it is to be noted that Alexis St. Martin's case proves that a gastric fistula is not painful. Scores of experiments were made on him, off and on, for nine years:--

"During the whole of these periods, from the spring of 1824 to the present time , he has enjoyed general good health, and perhaps suffered much less predisposition to disease than is common to men of his age and circumstances in life. He has been active, athletic, and vigorous; exercising, eating, and drinking like other healthy and active people. For the last four months he has been unusually plethoric and robust, though constantly subjected to a continuous series of experiments on the interior of the stomach; allowing to be introduced or taken out at the aperture different kinds of food, drinks, elastic catheters, thermometer tubes, gastric juice, chyme, etc., almost daily, and sometimes hourly.

"Such have been this man's condition and circumstances for several years past; and he now enjoys the most perfect health and constitutional soundness, with every function of the system in full force and vigour."

In 1834 Eberl? published a series of observations on the extraction of gastric juice from the mucous membrane of the stomach after death; in 1842 Blondlot of Nancy studied the gastric juice of animals by the method of a fistula, such as Alexis St. Martin had offered for Dr. Beaumont's observation. After Blondlot, came experiments on the movements of the stomach, and on the manifold influences of the nervous system on digestion.

It has been said, times past number, that an animal with a fistula is in pain. It is not true. The case of St. Martin is but one out of a multitude of these cases: an artificial orifice of this kind is not painful.

GLYCOGEN

Claude Bernard's discovery of glycogen in the liver had a profound influence both on physiology and on pathology. Take first its influence on pathology. Diabetes was known to Celsus, Aretaeus, and Galen; Willis, in 1674, and Morton, in 1675, noted the distinctive sweetness of the urine; and their successors proved the presence of sugar in it. Rollo, in 1787, observed that vegetable food was bad for diabetic patients, and introduced the strict use of a meat diet. But Galen had believed that diabetes was a disease of the kidneys, and most men still followed him: nor did Rollo greatly advance pathology by following not Galen, but Aretaeus. Later, with the development of organic chemistry, came the work of Chevreuil , Tiedemann and Gmelin , and other illustrious chemists: and the pathology of diabetes grew more and more difficult:--

"These observations gave rise to two theories: the one, that sugar is formed with abnormal rapidity in the intestine, absorbed into the blood, and excreted in the urine; the other, that diabetes is due to imperfect destruction of the sugar, either in the intestine or in the blood. Some held that it underwent conversion into lactic acid as it was passing through the intestinal walls, while others believed it to be destroyed in the blood by means of the alkali therein contained."

This sentence has been worked so hard that some of the words have got rubbed off it: and the statement generally made is of this kind:--

To Claude Bernard, experiments on animals for the direct advancement of medicine seemed a new thing: new, at all events, in comparison with the methods of some men of his time. He was only saying what Sir John Burdon Sanderson said in 1875 to the Royal Commission:--

Anyhow, lecturing a quarter of a century ago on diabetes, his special subject, Claude Bernard spoke out his longing to compel men into the ways of science, to give them some immediate sign which they could not refuse to see:--

"My first researches into the assimilation and destruction of sugar in the living organism were made in 1843: and in my inaugural thesis I published my first experiments on the subject. I succeeded in demonstrating a fact hitherto unknown, that cane-sugar cannot be directly destroyed in the blood. If you inject even a very small quantity of cane-sugar, dissolved in water, into the blood or under the skin of a rabbit, you find it again in the urine unchanged, with all its chemical properties the same.... I had soon to give up my first point of view, because this question of the existence of a sugar-producing organ, that I had thought such a hard problem of physiology, was really the first thing revealed to me, as it were of itself, at once."

He kept two dogs on different diets, one with sugar, the other without it; then killed them during digestion, and tested the blood in the hepatic veins:--

"What was my surprise, when I found a considerable quantity of sugar in the hepatic veins of the dog that had been fed on meat only, and had been kept for eight days without sugar: just as I found it in the other dog that had been fed for the same time on food rich in sugar....

His further discovery, that this formation of sugar is increased by puncture of the floor of the fourth ventricle, was published in 1849. It is impossible to exaggerate the importance of Claude Bernard's single-handed work in this field of physiology and pathology:--

"As a mere contribution to the history of sugar within the animal body, as a link in the chain of special problems connected with digestion and nutrition, its value was very great. Even greater, perhaps, was its effect as a contribution to general views. The view that the animal body, in contrast to the plant, could not construct, could only destroy, was, as we have seen, already being shaken. But evidence, however strong, offered in the form of numerical comparisons between income and output, failed to produce anything like the conviction which was brought home to every one by the demonstration that a substance was actually formed within the animal body, and by the exhibition of the substance so formed.

"No less revolutionary was the demonstration that the liver had other things to do in the animal economy besides secreting bile. This, at one blow, destroyed the then dominant conception that the animal body was to be regarded as a bundle of organs, each with its appropriate function, a conception which did much to narrow inquiry, since when a suitable function had once been assigned to an organ there seemed no need for further investigations....

"No less pregnant of future discoveries was the idea suggested by this newly-found-out action of the hepatic tissue, the idea happily formulated by Bernard as 'internal secretion.' No part of physiology is at the present day being more fruitfully studied than that which deals with the changes which the blood undergoes as it sweeps through the several tissues, changes by the careful adaptation of which what we call the health of the body is secured, changes the failure or discordance of which entails disease. The study of these internal secretions constitutes a path of inquiry which has already been trod with conspicuous success, and which promises to lead to untold discoveries of the greatest moment; the gate to this path was opened by Bernard's work."

But the work to be done, before all the clinical facts of the disease can be stated in terms of physiology, is not yet finished. In England, especial honour is due to Dr. Pavy for his life-long study of this most complex problem.

THE PANCREAS

This chaos of ideas was brought into some sort of order by Regnier de Graaf, pupil of Fran?ois de Bois . De Bois had guessed that the pancreas must be considered not according to its position in the body, but according to its structure: that it was analogous to the salivary glands. He urged his pupil to make experiments on it: and de Graaf says:--

"I put my hand to the work: and though many times I despaired of success, yet at last, by the blessing of God on my work and prayers, in the year 1660 I discovered a way of collecting the pancreatic juice."

And, by further experiment, he refuted Bartholini's theory that the pancreas was dependent on the spleen.

Sylvius had supposed that the pancreatic juice was slightly acid, and de Graaf failed to note this mistake; but it was corrected by Bohn's experiments in 1710.

Nearly two hundred years come between Regnier de Graaf and Claude Bernard: it is no wonder that Sir Michael Foster says that de Graaf's work was "very imperfect and fruitless." So late as 1840, there was yet no clear understanding of the action of the pancreas. Physiology could not advance without organic chemistry; de Graaf could no more discover the amylolytic action of the pancreatic juice than Galvani could invent wireless telegraphy. The physiologists had to wait till chemistry was ready to help them:--

"Of course, while physical and chemical laws were still lost in a chaos of undetermined facts, it was impossible that men should analyse the phenomena of life: first, because these phenomena go back to the laws of chemistry and physics; and next, because they cannot be studied without the apparatus, instruments, and all other methods of analysis that we owe to the laboratories of the chemists and the physicists."

Therefore de Graaf failed, because he got no help from other sciences. But it cannot be called failure; he must be contrasted with the men of his time, Lindanus and Bartholini, facts against theories, not with men of this century. And Claude Bernard went back to de Graaf's method of the fistula, having to guide him the facts of chemistry observed by Valentin, Tiedemann and Gmelin, and Eberl?. His work began in 1846, and the Acad?mie des Sciences awarded a prize to it in 1850:--

"Let this vague conception be compared with the knowledge which we at present have of the several distinct actions of the pancreatic juice, and of the predominant importance of this fluid not only in intestinal digestion but in digestion as a whole, and it will be at once seen what a great advance has taken place in this matter since the early forties. That advance we owe in the main to Bernard. Valentin, it is true, had in 1844 not only inferred that the pancreatic juice had an action on starch, but confirmed his view by actual experiment with the juice expressed from the gland; and Eberl? had suggested that the juice had some action on fat; but Bernard at one stroke made clear its threefold action. He showed that it on the one hand emulsified, and on the other hand split up, into fatty acids and glycerine, the neutral fats; he clearly proved that it had a powerful action on starch, converting it into sugar; and lastly, he laid bare its remarkable action on proteid matters."

Finally came the discovery that the pancreas--apart from its influences on digestion--contributes its share, like the ductless glands, to the general chemistry of the body:--

"It was discovered, a few years ago, by von Mering and Minkowski, that if, instead of merely diverting its secretion, the pancreas is bodily removed, the metabolic processes of the organism, and especially the metabolism of carbo-hydrates, are entirely deranged, the result being the production of permanent diabetes. But if even a very small part of the gland is left within the body, the carbo-hydrate metabolism remains unaltered, and there is no diabetes. The small portion of the organ which has been allowed to remain is sufficient, by the exchanges which go on between it and the blood generally, to prevent those serious consequences to the composition of the blood, and the general constitution of the body, which result from the complete removal of this organ."

Here, in this present study of "pancreatic diabetes," by Dr. Vaughan Harley and others, are facts as important as any that Bernard made out: in no way contradicting his work, but adding to it. The pancreas is no longer taken to be only a sort of salivary gland out of place: over and above the secretion that it pours into the intestines, it has an "internal secretion," a constituent of the blood: it belongs not only to the digestive system, but also, like the thyroid gland and the suprarenal capsules, to the whole chemistry of the blood and the tissues. So far has physiology come, unaided by anatomy, from the fantastic notions of Lindanus and the men of his time: and has come every inch of the way by the help of experiments on animals. Professor Starling's observations, on the chemical influence of the duodenal mucous membrane on the flow of pancreatic fluid, have advanced the subject still further.

Add to tbrJar First Page Next Page

Back to top Use Dark Theme