Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: The Natural History of Clay by Searle Alfred B Alfred Broadhead

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 294 lines and 42779 words, and 6 pages

CHAP. PAGE

Table of clay rocks viii

I Introduction. The chemical and physical properties of clays 1

II Clay and associated rocks 48

V Some clays of commercial importance 103

VI Clay-substance: theoretical and actual 135

Bibliography 168

Index 170

FIG.

THE CHIEF CLAY ROCKS

INTRODUCTION. THE CHEMICAL AND PHYSICAL PROPERTIES OF CLAY

The chief uses of clay have been recognized since the earliest periods of civilization; the ancient Assyrian and Egyptian records contain numerous references to the employment of clay for the manufacture of bricks and for fulling or whitening cloth.

Clays are distributed so widely and in many cases are so readily accessible that their existence and some of their characteristics are known in entirely uncivilized regions. The use of certain white clays as a food, or at any rate as a means of staving off hunger, is common among some tribes of very primitive peoples. The more important uses of clays for building and other purposes are naturally confined to the more civilized nations.

Most clays may be regarded as a mixture of quartz grains, undecomposed rock d?bris and various decomposition products of rocks; if the last-named consists chiefly of certain hydrous alumino-silicates, they may be termed 'clay substance' and form the soil employed in agriculture in many districts.

The Chemical Properties of Clay.

The chief constituents of all clays are alumina and silica, the latter being always in excess of the former. These two oxides are, apparently, combined to form a hydro-alumino-silicate or alumino-silicic acid corresponding to the formula H4Al2Si2O9, but many clays contain a much larger proportion of silica than is required to form this compound, and other alumino-silicates also occur in them in varying proportions .

All clays may, apparently, be regarded as consisting of a mixture of one or more hydrous alumino-silicates with free silica and other non-plastic minerals or rock granules, and their chemical properties are largely dependent on the nature and proportion of these accessory ingredients.

Taking china clay, which has been carefully purified by levigation, as representative of the composition of a 'pure' clay, it will be found that the chief impurities in clays are stones, gravel and sand--removable by washing or sifting; felspar, mica and other silicates and free silica--which cannot be completely removed without affecting the clay and lime, magnesia, iron, potash and soda compounds, together with minute quantities of other oxides, all of which appear to be so closely connected with the clay as to be incapable of removal from it by any mechanical methods of purification.

To give a detailed description of the effect of each of the impurities just referred to would necessitate a much larger volume than the present, but a few brief notes on the more important ones are essential to a further consideration of the natural history of clay.

Chalk is added to clay in the manufacture of malm-bricks to produce a more pleasing colour than would be obtained from the clay alone, to reduce the shrinkage of the clay to convenient limits and, less frequently, to form a more vitrifiable material. Chalk, on heating, combines with iron oxide and clay, forming a white silicate, so that some clays which would, alone, form a red brick, will, if mixed with chalk, form a white one.

Lime compounds have the serious objection of acting as very rapid and powerful fluxes, so that when clays containing them are heated sufficiently to start partial fusion, a very slight additional rise in temperature may easily reduce the whole to a shapeless, slag-like mass. Magnesia compounds act much more slowly in this respect and so are less harmful.

It is a curious fact that red iron oxide does not appear to form any compound with the other constituents of clay under ordinary conditions of firing, and although a 'base' and capable of reducing the heat-resisting power of clays, it does not appear to do so as long as the conditions in the kiln are sufficiently oxidizing. It is this which enables red bricks and other articles to be obtained with remarkable uniformity of colour combined with great physical strength. In a reducing atmosphere, on the contrary, ferrous oxide readily forms and attacks the clay, forming a dark grey vitreous mass. If the iron particles are separated from each other they will, on reduction, form small slag-like spots, but if they are in an extremely fine state of division and well distributed, the brick or other article will become slightly glossy and of an uniform black-grey tint. The famous Staffordshire 'blue' bricks owe their colour to this characteristic; they are not really 'blue' in colour. The effect of chalk on the colour of red-burning clays has already been mentioned.

Slightly magnified.

ANALYSES OF TYPICAL CLAYS

The amount of mechanically mixed water will naturally vary with the conditions to which the clay has been subjected; it will be greatest in wet situations and will diminish as the clay is allowed to dry.

The 'combined water,' on the contrary, appears to be a function of the true clay present in the material, and reaches its highest proportions in the china clays and kaolins, which contain approximately 13 per cent. On heating a clay to 105? C. the moisture or mechanically mixed water is evaporated, but the combined water remains unaffected until the temperature is raised to more than 600? C., when it is driven off and the clay is converted into a hard stone-like mass with properties entirely different from those it previously possessed .

The Physical Characters of Clays.

The physical characters of clays are of far more interest and importance than their chemical ones, though the two are naturally connected in many ways, and just as the chemical composition of clays is a subject of extreme complexity so is a study of many of their physical properties. Hence only a few of the more important characteristics can be mentioned here: for further details the reader must consult a larger treatise .

Clays are moderately soft, solid bodies, particularly when moistened, and can usually be cut with a knife, though some indurated clays and shales are almost as hard as felspar. Their apparent specific gravity varies greatly, some clays being much more porous than others, but the true specific gravity is usually between 2?5 and 2?65; it is similar to that of quartz and slightly lower than that of felspar and mica. Many clays appear to be devoid of structure, but those obtained from a considerable depth below the surface are frequently laminated and have a structure not unlike that of mica. This will be discussed later.

Clays emit a characteristic yet indefinable odour when moist; the cause of this is very imperfectly understood, though it is not improbably due to decomposing organic matter, as this occurs in most clays.

The colours of freshly-dug clays are extremely varied and range from an almost pure white through all shades of yellow, red and brown to black. The predominating colours are grey or greyish brown and a peculiar yellow characteristic of some surface clays. The natural colour of a clay is no criterion as to its purity, for some of the darkest ball clays produce perfectly white ware on burning, whilst some of the paler clays are useless to the potter on account of the intensity of their colour when they come out of the kiln. The colour of raw clays is largely due to the carbonaceous matter they contain, and as this burns away in the kiln, the final colour of the ware bears no relation whatever to that of the original clay.

The colour of burned ware depends upon the iron compounds in the clay--these producing buff, red, brown or black articles--on the presence of finely divided calcium carbonate which can destroy the colouring power of iron compounds and produce white ware, and on the treatment the clay has received in the kiln. A clay which is white when underfired will usually darken in colour if heated to vitrification, and one which burns red in an oxidizing atmosphere may turn blue-grey or black under reducing conditions. The extent to which the carbonaceous matter is burned out also determines the colour of the fired ware.

The presence of adventitious minerals in the clay may also affect its colour, particularly when fired.

The causes of plasticity appear to be somewhat numerous, though there is no generally accepted explanation of this remarkable quality which distinguishes clays from most other substances. It is true that wet sand, soap, wax, lead and some other materials possess a certain amount of plasticity, but not to anything like the same extent as clay.

So far as clays are concerned, their plasticity appears to be connected with the presence of combined water as well as of mechanically mixed water, for if either of these are removed, plasticity--both actual and potential--is destroyed. The part played by water is not, however, completely known, for the many theories which have been advanced only cover some of the conditions and facts.

A number of observers agree that the molecular constitution of clay is peculiar and that it is to this that plasticity is due. Yet the curious fact that the purest clays--the kaolins--are remarkably deficient in plasticity shows that molecular constitution is not, alone, sufficient. Others hold that the remarkably small size of clay particles enables them to pack together more closely than do particles of other materials and to retain around them a film of water which acts partly as a lubricant, facilitating the change of shape of the mass when under pressure, and partly as an adhesive, causing the particles to adhere to each other when the pressure is removed.

Zschokke has laid much emphasis on the importance of molecular attraction between clay and water as a cause of plasticity, and has suggested that the absorption of the water effects a change in the surfaces of the clay particles, giving them a gelatinous nature and enabling them to change their form and yet keep in close contact.

The fact that mica, fluorspar and quartz, when in a sufficiently finely divided state, are also slightly plastic, appears to be opposed to the molecular constitution theory. Smallness of grain undoubtedly has an influence on the plasticity of clay, coarse-grained clays being notably less plastic than others.

Daubr?e pointed out that felspar, when ground with water, develops plasticity to a small extent, and Olschewsky carried this observation further and has suggested that clays owe their plasticity to prolonged contact with water during their removal from their place of formation and previous to or during their deposition. A further confirmation of this theory is due to Mellor who showed that on heating china clay with water under very considerable pressure its plasticity was increased and that felspar and some other non-plastic materials developed plasticity under these conditions.

Johnson and Blake supposed that plasticity is due to the clay being composed of extremely minute plates 'bunched together,' a view which was also held by Biedermann and Herzfield, Le Chatelier and others. Olschewsky enlarged this theory by suggesting that the plasticity of certain clays is dependent on the large surface and the interlocking of irregular particles with the plates just mentioned. These theories of interlocking are, however, incomplete, because the tensile strength of clays should accurately represent the plasticity if interlocking were the sole cause. Zschokke has shown that tensile strength is only one factor which must be determined in any attempt to measure plasticity.

E. H. L. Schwarz has suggested that many clays are composed of small globular masses of plates so arranged as to form an open network which is sufficiently strong not to be destroyed by pressure. In the presence of water and much rubbing the plates are separated and are made to lie flat on each other, thereby giving a plastic and impermeable mass. If this is really the case it would explain the porosity and large surface of some clays and might account for their adsorptive power.

Despite the present impossibility of producing a plastic material from artificially prepared colloidal hydro-alumino-silicates of the same ultimate composition as clay, and the fact that the addition of colloidal substances does not necessarily increase the true plasticity of clay, it cannot be denied that the presence of colloids has an important influence on it. The addition of starches, glue, gums and similar substances whilst apparently increasing the plasticity of clay does not do so in reality. The addition of 1 per cent. of tannin, on the contrary, has been found by Ries to increase both plasticity and binding power.

Plasticity appears to be composed of a number of characteristics so that it is scarcely likely that any single cause can be assigned to it. On the contrary, a study of the binding power, tensile strength, extensibility, adsorption, texture and molecular constitution of clays suggests very strongly that all these properties are involved in the production of plasticity and that it is due to the chemical as well as the physical nature of clay. No clay is entirely colloidal--or it would be elastic and not plastic--but all appear to contain both colloidal and non-colloidal particles, and it is not improbable that materials in both these states are required, the colloidal matter acting as a cement. Ries has, in fact, pointed out that colloids alone lack cohesiveness and solidity, and a fine mineral aggregate is necessary to change them into a plastic mass resembling clay. The relative proportions of the colloidal material and the sizes of the non-plastic grains will exercise an important influence on all the physical characteristics mentioned above, and therefore on the plasticity.

The manner in which slightly plastic clays become highly plastic in nature is by no means certainly known. It has long been understood that the increase of plasticity is due to changes undergone by the clay during transportation. The most illuminating suggestion is that made by Acheson in 1902, who concluded that it is due to impurities in the water used in transporting the clay or remaining in contact with it during and after its deposition. These impurities may be considered as derived from the washings of forests, and after many experiments with plant extracts Acheson believed the most important substance in this connection to be tannin or gallo-tannic acid, a dilute solution of which he found increased the plasticity of china clay by 300 per cent. From this he further argued that the use of chopped straw by the Israelites in Egypt in the manufacture of bricks was unconsciously based on the tannin content of the straw increasing the plasticity of the material.

Beadle has stated that 2 per cent. of dissolved cellulose will increase the plasticity of china clay and make it equal to that of ordinary clay.

Rohland has shown that the binding power of clay is not alone due to its cohesion, but that it is closely associated with the colloidal nature of plastic clays: 'fat' clays being those which are highly colloidal, highly plastic and possessing great binding power, whilst 'lean' clays are those deficient in these characteristics. The fact that, as a general rule, the dark coloured clays possess the most binding power, confirms this suggestion, as the dark colour is largely due to organic materials, probably in a colloidal state.

As all coagulated colloids, which have absorbed water, shrink on drying, this behaviour of clay appears to confirm the view as to its partially colloidal nature held by some investigators.

When a piece of dry clay is heated sufficiently a further shrinkage occurs. This begins somewhat below a red heat and increases in rough proportion to the temperature and the duration of the heating. Prolonged heating at a lower temperature will effect the same amount of shrinkage as a short exposure to a higher temperature, but though the greater part of the shrinkage occurs in a comparatively short time, continued heating will be accompanied by a further reduction in volume.

This is due to the fact that clays have no definite melting point, but undergo partial fusion at all temperatures above 950? C. or, in some cases, at even lower ones. As a portion of the material fuses, it fills up the pores in the mass and attacks the unfused material, this process being continued until either the heating is stopped or the whole material is reduced to a viscous slag.

The reduction in the volume of commercial articles made of clay and placed in kilns varies greatly. With bricks, terra-cotta and pottery it must not, usually, exceed 40 per cent. or the warping and cracking which occur will be so great as to make the articles useless. The fineness of the particles exercises an important influence on the kiln shrinkage of a clay, and the latter is frequently reduced in commercial clayworking by adding burned clay ground to a coarse powder to the plastic clay before it is used. Sand is sometimes added for the same purpose, though its more frequent use is to reduce the shrinkage in drying.

Quartz and other forms of free silica expand on heating, so that clays containing them in large quantities shrink very slightly or may even expand.

Add to tbrJar First Page Next Page

Back to top Use Dark Theme