Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: Insect Architecture by Rennie James Wood J G John George Editor

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 660 lines and 120732 words, and 14 pages

gly recommended to the notice of the well-educated. The pleasures of childhood are generally supposed to be more exquisite, and to contain less alloy, than those of riper years; and if so, it must be because then everything appears new and dressed in fresh beauties: while in manhood, and old age, whatever has frequently recurred begins to wear the tarnish of decay. The study of nature affords us a succession of "ever-new delights," such as charmed us in childhood, when everything had the attractions of novelty and beauty; and thus the mind of the naturalist may have its own fresh and vigorous thoughts, even while the infirmities of age weigh down the body.

It has been objected to the study of insects, as well as to that of Natural History in general, that it tends to withdraw the mind from subjects of higher moment; that it cramps and narrows the range of thought; and that it destroys, or at least weakens, the finer creations of the fancy. Now, we should allow this objection in its fullest extent, and even be disposed to carry it further than is usually done, if the collecting of specimens only, or, as the French expressly call them, chips , be called a study. But the mere collector is not, and cannot be, justly considered as a naturalist; and, taking the term naturalist in its enlarged sense, we can adduce some distinguished instances in opposition to the objection. Rousseau, for example, was passionately fond of the Linnaean botany, even to the driest minutiae of its technicalities; and yet it does not appear to have cramped his mind, or impoverished his imagination. If Rousseau, however, be objected to as an eccentric being, from whose pursuits no fair inference can be drawn, we give the illustrious example of Charles James Fox, and may add the names of our distinguished poets, Goldsmith, Thomson, Gray, and Darwin, who were all enthusiastic naturalists. We wish particularly to insist upon the example of Gray, because he was very partial to the study of insects. It may be new to many of our readers, who are familiar with the 'Elegy in a Country Churchyard,' to be told that its author was at the pains to turn the characteristics of the Linnaean orders of insects into Latin hexameters, the manuscript of which is still preserved in his interleaved copy of the 'Systema Naturae.' Further, to use the somewhat exaggerated words of Kirby and Spence, whose work on Entomology is one of the most instructive and pleasing books on the science, 'Aristotle among the Greeks, and Pliny the Elder among the Romans, may be denominated the fathers of Natural History, as well as the greatest philosophers of their day; yet both these made insects a principal object of their attention: and in more recent times, if we look abroad, what names greater than those of Redi, Malpighi, Vallisnieri, Swammerdam, Leeuwenhoek, R?aumur, Linnaeus, De Geer, Bonnet, and the Hubers? and at home, what philosophers have done more honour to their country and to human nature than Ray, Willughby, Lister, and Derham? Yet all these made the study of insects one of their most favourite pursuits."

And yet this study has been considered, by those who have superficially examined the subject, as belonging to a small order of minds; and the satire of Pope has been indiscriminately applied to all collectors, while, in truth, it only touches those who mistake the means of knowledge for the end:--

Thus exclaims the Goddess of Dulness, sweeping into her net all those who study nature in detail. But if the matter were rightly appreciated, it would be evident that no part of the works of the Creator can be without the deepest interest to an inquiring mind; and that a portion of creation which exhibits such extraordinary manifestations of design as is shown by insects must have attractions for the very highest understanding.

An accurate knowledge of the properties of insects is of great importance to man, merely with relation to his own comfort and security. The injuries which they inflict upon us are extensive and complicated; and the remedies which we attempt, by the destruction of those creatures, both insects, birds, and quadrupeds, who keep the ravages in check, are generally aggravations of the evil, because they are directed by an ignorance of the economy of nature. The little knowledge which we have of the modes by which insects may be impeded in their destruction of much that is valuable to us, has probably proceeded from our contempt of their individual insignificance. The security of property has ceased to be endangered by quadrupeds of prey, and yet our gardens are ravaged by aphides and caterpillars. It is somewhat startling to affirm that the condition of the human race is seriously injured by these petty annoyances; but it is perfectly true that the art and industry of man have not yet been able to overcome the collective force, the individual perseverance, and the complicated machinery of destruction which insects employ. A small ant, according to a most careful and philosophical observer, opposes almost invincible obstacles to the progress of civilization in many parts of the equinoctial zone. These animals devour paper and parchment; they destroy every book and manuscript. Many provinces of Spanish America cannot, in consequence, show a written document of a hundred years' existence. "What development," he adds, "can the civilization of a people assume, if there be nothing to connect the present with the past--if the depositories of human knowledge must be constantly renewed--if the monuments of genius and wisdom cannot be transmitted to posterity?" Again, there are beetles which deposit their larvae in trees in such formidable numbers that whole forests perish beyond the power of remedy. The pines of the Hartz have thus been destroyed to an enormous extent; and in North America, at one place in South Carolina, at least ninety trees in every hundred, upon a tract of two thousand acres, were swept away by a small black, winged bug. And yet, according to Wilson, the historian of American birds, the people of the United States were in the habit of destroying the redheaded woodpecker, the great enemy of these insects, because he occasionally spoilt an apple. The same delightful writer and true naturalist, speaking of the labours of the ivory-billed woodpecker, says, "Would it be believed that the larvae of an insect or fly, no larger than a grain of rice, should silently, and in one season, destroy some thousand acres of pine-trees, many of them from two to three feet in diameter, and a hundred and fifty feet high? In some places the whole woods, as far as you can see around you, are dead, stripped of the bark, their wintry-looking arms and bare trunks bleaching in the sun, and tumbling in ruins before every blast." The subterraneous larva of some species of beetle has often caused a complete failure of the seed-corn, as in the district of Halle in 1812. The corn-weevil, which extracts the flour from grain, leaving the husk behind, will destroy the contents of the largest storehouses in a very short period. The wire-worm and the turnip-fly are dreaded by every farmer. The ravages of the locust are too well known not to be at once recollected as an example of the formidable collective power of the insect race. The white ants of tropical countries sweep away whole villages with as much certainty as a fire or an inundation; and ships even have been destroyed by these indefatigable republics. Our own docks and embankments have been threatened by such minute ravagers.

The enormous injuries which insects cause to man may thus be held as one reason for ceasing to consider the study of them as an insignificant pursuit; for a knowledge of their structure, their food, their enemies, and their general habits, may lead, as it often has led, to the means of guarding against their injuries. At the same time we derive from them both direct and indirect benefits. The honey of the bee, the dye of the cochineal, and the web of the silk-worm, the advantages of which are obvious, may well be balanced against the destructive propensities of insects which are offensive to man. But a philosophical study of natural history will teach us that the direct benefits which insects confer upon us are even less important than their general uses in maintaining the economy of the world. The mischiefs which result to us from the rapid increase and the activity of insects are merely results of the very principle by which they confer upon us numberless indirect advantages. Forests are swept away by minute beetles; but the same agencies relieve us from that extreme abundance of vegetable matter which would render the earth uninhabitable were this excess not periodically destroyed. In hot countries the great business of removing corrupt animal matter, which the vulture and hyaena imperfectly perform, is effected with certainty and speed by the myriads of insects that spring from the eggs deposited in every carcase by some fly seeking therein the means of life for her progeny. Destruction and reproduction, the great laws of nature, are carried on very greatly through the instrumentality of insects; and the same principle regulates even the increase of particular species of insects themselves. When aphides are so abundant that we know not how to escape their ravages, flocks of lady-birds instantly cover our fields and gardens to destroy them. Such considerations as these are thrown out to show that the subject of insects has a great philosophical importance--and what portion of the works of nature has not? The habits of all God's creatures, whether they are noxious, or harmless, or beneficial, are worthy objects of our study. If they affect ourselves, in our health or our possessions, whether for good or for evil, an additional impulse is naturally given to our desire to attain a knowledge of their properties. Such studies form one of the most interesting occupations which can engage a rational and inquisitive mind; and, perhaps, none of the employments of human life are more dignified than the investigation and survey of the workings and the ways of nature in the minutest of her productions.

The exercise of that habit of observation which can alone make a naturalist--"an out-of-door naturalist," as Daines Barrington calls himself--is well calculated to strengthen even the most practical and merely useful powers of the mind. One of the most valuable mental acquirements is the power of discriminating among things which differ in many minute points, but whose general similarity of appearance usually deceives the common observer into a belief of their identity. The study of insects, in this point of view, is most peculiarly adapted for youth. According to our experience, it is exceedingly difficult for persons arrived at manhood to acquire this power of discrimination; but, in early life, a little care on the part of the parent or teacher will render it comparatively easy. In this study the knowledge of things should go along with that of words. "If names perish," says Linnaeus, "the knowledge of things perishes also:" and, without names, how can any one communicate to another the knowledge he has acquired relative to any particular fact, either of physiology, habit, utility, or locality? On the other hand, mere catalogue learning is as much to be rejected as the loose generalizations of the despisers of classification and nomenclature. To name a plant, or an insect, or a bird, or a quadruped rightly, is one step towards an accurate knowledge of it; but it is not the knowledge itself. It is the means, and not the end in natural history, as in every other science.

If the bias of opening curiosity be properly directed, there is not any branch of natural history so fascinating to youth as the study of insects. It is, indeed, a common practice in many families to teach children, from their earliest infancy, to treat the greater number of insects as if they were venomous and dangerous, and, of course, meriting to be destroyed, or at least avoided with horror. Associations are by this means linked with the very appearance of insects, which become gradually more inveterate with advancing years; provided, as most frequently happens, the same system be persisted in, of avoiding or destroying almost every insect which is unlucky enough to attract observation. How much rational amusement and innocent pleasure is thus thoughtlessly lost; and how many disagreeable feelings are thus created, in the most absurd manner! In order to show that the study or the observation of insects is peculiarly fascinating to children, even in their early infancy, we may refer to what we have seen in the family of a friend, who is partial to this, as well as to all the departments of natural history. Our friend's children, a boy and girl, were taught, from the moment they could distinguish insects, to treat them as objects of interest and curiosity, and not to be afraid even of those which wore the most repulsive appearance. The little girl, for example, when just beginning to walk alone, encountered one day a large staphylinus , which she fearlessly seized, and did not quit her hold, though the insect grasped one of her fingers in his formidable jaws. The mother, who was by, knew enough of the insect to be rather alarmed for the consequences, though she prudently concealed her feelings from the child. She did well; for the insect was not strong enough to break the skin, and the child took no notice of its attempts to bite her finger. A whole series of disagreeable associations with this formidable-looking family of insects was thus averted at the very moment when a different mode of acting on the part of the mother would have produced the contrary effect. For more than two years after this occurrence the little girl and her brother assisted in adding numerous specimens to their father's collection, without the parents ever having cause, from any accident, to repent of their employing themselves in this manner. The sequel of the little girl's history strikingly illustrates the position for which we contend. The child happened to be sent to a relative in the country, where she was not long in having carefully instilled into her mind all the usual antipathies against "everything that creepeth on the earth;" and though she afterwards returned to her paternal home, no persuasion or remonstrance could ever again persuade her to touch a common beetle, much less a staphylinus, with its tail turned up in a threatening attitude, and its formidable jaws ready extended for attack or defence. We do not wish that children should be encouraged to expose themselves to danger in their encounters with insects. They should be taught to avoid those few which are really noxious--to admire all--to injure none.

A collection of insects is to the true naturalist what a collection of medals is to the accurate student of history. The mere collector, who looks only to the shining wings of the one, or the green rust of the other, derives little knowledge from his pursuit. But the cabinet of the naturalist becomes rich in the most interesting subjects of contemplation, when he regards it in the genuine spirit of scientific inquiry. What, for instance, can be so delightful as to examine the wonderful variety of structure in this portion of the creation; and, above all, to trace the beautiful gradations by which one species runs into another? Their differences are so minute, that an unpractised eye would proclaim their identity; and yet, when the species are separated, and not very distantly, they become visible even to the common observer. It is in examinations such as these that the naturalist finds a delight of the highest order. While it is thus one of the legitimate objects of his study to attend to minute differences of structure, form, and colouring, he is not less interested in the investigation of habits and economy; and in this respect the insect world is inexhaustibly rich. We find herein examples of instinct to parallel those of all the larger animals, whether they are solitary or social; and innumerable others besides, altogether unlike those manifested in the superior departments of animated nature. These instincts have various directions, and are developed in a more or less striking manner to our senses, according to the force of the motive by which they are governed. Some of their instincts have for their object the preservation of insects from external attack; some have reference to procuring food, and involve many remarkable stratagems; some direct their social economy, and regulate the condition under which they live together either in monarchies or republics, their colonizations, and their migrations; but the most powerful instinct which belongs to insects has regard to the preservation of their species. We find, accordingly, that as the necessity for this preservation is of the utmost importance in the economy of nature, so for this especial object many insects, whose offspring, whether in the egg or the larva state, are peculiarly exposed to danger, are endued with an almost miraculous foresight, and with an ingenuity, perseverance, and unconquerable industry, for the purpose of avoiding those dangers, which are not to be paralleled even by the most singular efforts of human contrivance. The same ingenuity which is employed for protecting either eggs, or caterpillars and grubs, or pupae and chrysalides, is also exercised by many insects for their own preservation against the changes of temperature to which they are exposed, or against their natural enemies. Many species employ those contrivances during the period of their hibernation, or winter sleep. For all these purposes some dig holes in the earth, and form them into cells; others build nests of extraneous substances, such as bits of wood and leaves; others roll up leaves into cases, which they close with the most curious art; others build a house of mud, and line it with the cotton of trees, or the petals of the most delicate flowers; others construct cells, of secretions from their own bodies; others form cocoons, in which they undergo their transformation; and others dig subterraneous galleries, which, in their complexity of arrangement, in solidity, and in complete adaptation to their purposes, vie with the cities of civilised man. The contrivances by which insects effect these objects have been accurately observed and minutely described, by patient and philosophical inquirers, who knew that such employments of the instinct with which each species is endowed by its Creator offered the most valuable and instructive lessons, and opened to them a wide field of the most delightful study. The construction of their habitations is certainly among the most remarkable peculiarities in the economy of insects; and it is of this subject that we propose to treat under the general name, which is sufficiently applicable to our purpose, of Insect Architecture.

In the descriptions which we shall give of Insect Architecture, we shall employ as few technical words as possible: and such as we cannot well avoid, we shall explain in their places; but, since our subject chiefly relates to the reproduction of insects, it may be useful to many readers to introduce here a brief description of the changes which they undergo.

Larvae are remarkably small at first, but grow rapidly. The full-grown caterpillar of the goat-moth is thus seventy-two thousand times heavier than when it issues from the egg; and the maggot of the blow-fly is, in twenty-four hours, one hundred and fifty-five times heavier than at its birth. Some larvae have feet, others are without; none have wings. They cannot propagate. They feed voraciously on coarse substances; and as they increase in size, which they do very rapidly, they cast their skins three or four times. In defending themselves from injury, and in preparing for their change by the construction of secure abodes, they manifest great ingenuity and mechanical skill. The figures on the preceding page exemplify various forms of insects in this stage of their existence.

STRUCTURES FOR PROTECTING EGGS.--MASON-WASPS; MASON-BEES; MINING-BEES.

The provisions which are made by the different species of insects for protecting their eggs, appear in many cases to be admirably proportioned to the kind of danger and destruction to which they may be exposed. The eggs themselves, indeed, are not so liable to depredation and injury as the young brood hatched from them; for, like the seeds of plants, they are capable of withstanding greater degrees both of heat and cold than the insects which produce them. According to the experiments of Spallanzani, the eggs of frogs that had been exposed to various degrees of artificial heat were scarcely altered in their productive powers by a temperature of 111? of Fahrenheit, but they became corrupted after 133?. He tried the same experiment upon tadpoles and frogs, and found they all died at 111?. Silkworms died at a temperature of 108?, while their eggs did not entirely cease to be fertile till 144?. The larvae of flesh-flies perished, while the eggs of the same species continued fertile, at about the same comparative degrees of heat as in the preceding instances. Intense cold has a still less effect upon eggs than extreme heat. Spallanzani exposed the eggs of silk-worms to an artificial cold 23? below zero, and yet, in the subsequent spring, they all produced caterpillars. Insects almost invariably die at the temperature of 14?, that is, at 18? below the freezing point. The care of insects for the protection of their eggs is not entirely directed to their preservation in the most favourable temperature for being hatched, but to secure them against the numerous enemies which would attempt their destruction; and, above all, to protect the grubs, when they are first developed, from those injuries to which they are peculiarly exposed. Their prospective contrivances for accomplishing these objects are in the highest degree curious.

Most persons have more or less acquaintance with the hives of the social species of bees and wasps; but little is generally known of the nests constructed by the solitary species, though in many respects these are not inferior to the others in displays of ingenuity and skill. We admire the social bees, labouring together for one common end, in the same way that we look with delight upon the great division of labour in a well-ordered manufactory. As in a cotton-mill some attend to the carding of the raw material, some to its formation into single threads, some to the gathering these threads upon spindles, others to the union of many threads into one,--all labouring with invariable precision because they attend to a single object;--so do we view with delight and wonder the successive steps by which the hive-bees bring their beautiful work to its completion,--striving, by individual efforts, to accomplish their general task, never impeding each other by useless assistance, each taking a particular department, and each knowing its own duties. We may, however, not the less admire the solitary wasp or bee, who begins and finishes every part of its destined work; just as we admire the ingenious mechanic who perfects something useful or ornamental entirely by the labour of his own hands,--whether he be the patient Chinese carver, who cuts the most elaborately-decorated boxes out of a solid piece of ivory, or the turner of Europe, who produces every variety of elegant form by the skilful application of the simplest means.

Our island abounds with many varieties of solitary wasps and bees; and their nests may therefore be easily discovered by those who, in the proper seasons, are desirous of observing the peculiarities of their architecture.

Mason-Wasps.

Within two days the excavation was completed; but it required two other days to line it with a coating of clay, to deposit the eggs, two in number, and, no doubt, to imprison a few live spiders or caterpillars for the young when hatched--a process which was first observed by Ray and Willughby, but which has since been frequently ascertained. In the present instance, this peculiarity was not seen; but the little architect was detected in closing up the entrance, which was formed of a layer of clay more than double the thickness of the interior lining. In November following, we hewed away the brick around this nest, and found the whole excavation was rather less than an inch in depth.

Notwithstanding all the precautions of the careful parent to conceal her nest it was found out by one of the cuckoo-flies --probably a common species very similar to the house-fly, but rather larger, which deposited an egg there; and the grub hatched from it, after devouring one of the wasp-grubs, formed itself a cocoon , as did the other undevoured grub of the wasp . Both awaited the return of summer to change into winged insects, burst their cerements, and proceed as their parents did.

Another mason-wasp , differing little in appearance from the former, may often be seen frequenting sandy banks exposed to the sun, and constructing its singular burrows. The sort of sand-bank which it selects is hard and compact; and though this may be more difficult to penetrate, the walls are not liable to fall down upon the little miner. In such a bank, the mason-wasp bores a tubular gallery two or three inches deep. The sand upon which R?aumur found some of these wasps at work was almost as hard as stone, and yielded with difficulty to his nail; but the wasps dug into it with ease, having recourse, as he ascertained, to the ingenious device of moistening it by letting fall two or three drops of fluid from their mouth, which rendered the mass ductile, and the separation of the grains easy to the double pickaxe of the little pioneers.

The mason-wasp does not furnish the cell she has thus constructed with pollen and honey, like the solitary bees, but with living caterpillars, and these always of the same species--being of a green colour, and without feet. She fixes the caterpillars together in a spiral column: they cannot alter their position, although they remain alive. They are an easy prey to their smaller enemy; and when the grub has eaten them all up, it spins a case, and is transformed into a pupa, which afterwards becomes a wasp. The number of caterpillars which is thus found in the lower cavity of the mason-wasp's nest is ordinarily from ten to twelve. The mother is careful to lay in the exact quantity of provision which is necessary to the growth of the grub before he quits his retreat. He works through his store till his increase in this state is perfected, and he is on the point of undergoing a change into another state, in which he requires no food. The careful purveyor, cruel indeed in her choice of a supply, but not the less directed by an unerring instinct, selects such caterpillars as she is conscious have completed their growth, and will remain thus imprisoned without increase or corruption till their destroyer has gradually satisfied the necessities of his being. "All that the worm of the wasp," says R?aumur, "has to do in his nest, from his birth to his transformation, is to eat." There is another species of wasp which does not at once enclose in its nest all the sustenance which its larva will require before transformation, but which from time to time imprisons a living caterpillar, and when that is consumed, opens the nest and introduces another.

The insect is one of the most plentiful in England, and can be found on sunny days, flitting about sand-banks and making its curious habitations. The length is nearly half an inch, and the colour is black, variegated with five yellow bands upon the abdomen.

This insect is to be found in most warm and sandy situations, and may be looked for at the end of summer and beginning of autumn. It may be easily known by its red spot on the abdomen, and the large, transverse head; it is wider than the thorax.

Mr. F. Smith discovered the metropolis of this usually scarce insect at Sandown Bay, in the Isle of Wight, and has given an interesting description of its habits. He states that although it is so ferocious towards other insects, it appears to be perfectly harmless as far as man is concerned, allowing itself to be handled without even attempting to use its sting. Indeed, he was quite unable to provoke the insect to do so. Various bees were captured by the Philanthus, and the favourites seemed to belong to the genus Andrena, itself a burrowing bee, and the common hive-bee. The Philanthus seemed perfectly indifferent whether they attacked the comparatively small and feeble Andrena, or the formidable hive-bee, taking them as they came, and caring nothing for the sting. The Philanthus that burrowed on the top of the cliff, seemed to prefer the hive-bee, because the red clover attracted greater numbers of that insect. Those that made their burrows at the top of the cliff, took the Andrenae. Of course, the Philanthus is obliged to catch more of the Andrenae than the hive bees. Only one species of this genus is known in England; it is to be found in July and August.

There is a very large genus of rather small humming-bees, many of which are popularly mistaken for wasps, on account of their sharply pointed and yellow banded abdomen; they belong to the genus Crabro, and are extremely variable in the material into which they burrow, and the insects with which they feed their young. Some species burrow into dry bramble sticks. If the reader should wish to obtain specimens of them, as well as other burrowers, he will find bramble, rose, and jessamine sticks most prolific in them. The best plan is to collect a quantity of these sticks and put them into glass tubes, with the ends stopped with wire gauze; there is then an absolute certainty of identifying the insect with its habitation. The spring is the best time for collecting. Sometimes these creatures are afflicted with parasites, which also are detained in the tube, so as to yield valuable information to the captor.

The female, which is the larger of the two sexes, measures only three lines in length. The colour is shining black, and the head is rather squared.

It generally burrows into light earth, though it sometimes drives its tunnel into decayed wood. In either case, it provisions its nest with spiders, flying into the hedges, pulling the unfortunate spiders out of their webs, and carrying them into the burrow. One burrow contains a series of cells, which are separated from each other by partitions of sand, the particles of which are firmly cemented together by some glutinous substance secreted by the insect. Some species of this genus burrow into the pith of the bramble and other shrubs.

When the female has dug her burrow, she sets off in search of a caterpillar of proportionate size, and having conveyed it into her dwelling, she affixes an egg to the imprisoned larva, and goes off in search of another, carefully stopping up the entrance with stones. In fine weather she will fill one burrow with caterpillars in a few hours, and then begin another nursery for the future young. This species appears always to make use of caterpillars, but another allied species prefers spiders. Mr. F. Smith mentions that he has found in a high sand-bank as many as twenty females apparently hibernating together till suitable weather enabled them to pursue their usual economy.

There is a remarkably pretty, and very variable, sand-wasp, which is plentiful in most parts of the country. The colour is black, and the abdomen is banded by four yellow bars. Its feet are also yellow. Mr. Smith has written a very interesting account of the proceedings of this insect.

"It is amusing to see four or five females lie in wait upon a patch of cow-dung until some luckless fly settles on it. When this happens, a cunning and gradual approach is made; a sudden attempt would not succeed. The fly is the insect of quickest flight, therefore a degree of intrigue is necessary. This is managed by running past the victim slowly, and apparently in an unconcerned manner, until the poor fly is caught unawares, and carried off by the Mellinus to its burrow. The first fly being deposited, an egg is laid. The necessary number of flies are soon secured, and her task is completed. Sometimes she is interrupted by rainy weather, and it is some days ere she can store up the quantity required.

"A larva found feeding became full-fed in ten days. Six flies were devoured, the heads, harder parts of the throat, portions of the abdomen, and the legs, being left untouched. The larva spins a tough, thin, brown silken cocoon, passes the winter and spring in the larva state, changes to the nymph on the approach of summer, and appears about the beginning of autumn in the perfect state."

When the female Scolia is about to fulfil the great object for which she came into the world, she looks about for a suitable spot, where the ground is not too hard, and digs a perpendicular burrow of some depth, enlarging it at the bottom, and digging horizontally, so that the general shape of the burrow somewhat resembles that of a boot. When the burrow is completed, the insect flies off in search of food for its young, and presently returns, bearing with her a grub, which she clasps tightly under her chest, so that her wings may be at liberty. She then takes the grub to the bottom of the tunnel, deposits an egg upon it, and if the grub be a small one, goes off to fetch another. When a sufficiency of food has been obtained, she covers up the grub and egg and leaves the latter to its fate. In due time it is hatched, and begins straightway to feed upon its unfortunate fellow-prisoner. When all the food is gone, it is old enough to assume the perfect form, and when it finally becomes a perfect insect, it makes its way into the open air, and straightway looks out for a mate.

For figures 3 and 4 the reader is referred to the heading "Spiders."

Mr. F. Smith has described to me the method employed by this insect in catching flies. In the air it would not have a chance of success, and so it proceeds after a fashion very much like that which is adopted by the hunting-spider. Choosing some spot where flies are likely to settle, such as a bare, sunny bank, the Oxybelus alights upon it and begins to run about without any apparent motive. At first the flies are rather alarmed, but after a while they become accustomed to the rapid movements of their foe, and allow it to come nearer and nearer the cause of its perambulations. As soon as it has succeeded in drawing within a few inches of a fly, the Oxybelus leaps upon it, just like the hunting spider on its prey, and flies off before the victim knows that an attack is even meditated.

The burrow of this species is made in hard white sand.

This beetle is among the most noxious of our garden foes, and the more so because its ravages are unseen. In its larval state it infests the roots of many of our succulent plants and flowers, and has a habit of eating away the plant just at the junction of the root and stem. Even flowers in pots are apt to be infested by this insect, and often die without the cause of their death being discovered. It is about half an inch in length, white, and is destitute of feet, their office being performed by bundles of stiff hairs, which are dispersed round the body.

The exterior of this beetle is extremely hard, even exceptionally so among the hard-bodied weevils. It is extremely difficult to get a pin through the body, and the entomologist is often obliged to bore a hole with a stout needle before the pin can be inserted. Yet, the Cerceris uses this insect as the food of its young, and stores them away in its burrow. That the young should eat them seems as impossible as if a lobster or a box-tortoise had been inserted in their place. It is, however, thought by most practical entomologists that the shell of the weevil is softened by lying in the damp ground, and that as the young is not hatched for several days after the burrow is sealed up, the hard wing cases have time to soften.

Mason-Bees.

It would not be easy to find a more simple, and, at the same time, ingenious specimen of insect architecture than the nests of those species of solitary bees which have been justly called mason-bees . R?aumur, who was struck by the analogies between the proceedings of insects and human arts, first gave to bees, wasps, and caterpillars those names which indicate the character of their labours; and which, though they may be considered a little fanciful, are at least calculated to arrest the attention. The nests of mason-bees are constructed of various materials; some with sand, some with earth mixed with chalk, and some with a mixture of earthy substances and wood.

On the north-east wall of Greenwich Park, facing the road, and about four feet from the ground, we discovered , December 10th, 1828, the nest of a mason-bee, formed in the perpendicular line of cement between two bricks. Externally there was an irregular cake of dry mud, precisely as if a handful of wet road-stuff had been taken from a cart-rut and thrown against the wall; though, upon closer inspection, the cake contained more small stones than usually occur in the mud of the adjacent cart-ruts. We should in fact have passed it by without notice had there not been a circular hole on one side of it, indicating the perforation of some insect. This hole was found to be the orifice of a cell about an inch deep, exactly of the form and size of a lady's thimble, finely polished, and of the colour of plaster-of-paris, but stained in various places with yellow.

This cell was empty; but, upon removing the cake of mud, we discovered another cell, separated from the former by a partition about a quarter of an inch thick, and in it a living bee, from which the preceding figure was drawn, and which, as we supposed, had just changed from the pupa to the winged state, in consequence of the uncommon mildness of the weather. The one which had occupied the adjacent cell had no doubt already dug its way out of its prison, and would probably fall a victim to the first frost.

Our nest contained only two cells--perhaps from there not being room between the bricks for more.

An interesting account is given by R?aumur of another mason-bee , not a native of Britain, selecting earthy sand, grain by grain; her glueing a mass of these together with saliva, and building with them her cells from the foundation. But the cells of the Greenwich Park nest were apparently composed of the mortar of the brick wall; though the external covering seems to have been constructed as R?aumur describes his nest, with the occasional addition of small stones.

The distance to which they carried the clay was probably considerable, as there was no wall near, in the direction they all flew towards, upon which they could build; and in the same direction also, it is worthy of remark, they could have procured much nearer the very same sort of clay. Whatever might be the cause of their preference, we could not but admire their extraordinary industry. It did not require more than half a minute to knead one of the pellets of clay; and, from their frequent returns, probably not more than five minutes to carry it to the nest, and apply it where wanted. From the dryness of the weather, indeed, it was indispensable for them to work rapidly, otherwise the clay could not have been made to hold together. The extent of the whole labour of forming a single nest may be imagined, if we estimate that it must take several hundred pellets of clay for its completion. If a bee work fourteen or fifteen hours a-day, therefore, carrying ten or twelve pellets to its nest every hour, it will be able to finish the structure in about two or three days; allowing some hours of extra time for the more nice workmanship of the cells in which the eggs are to be deposited, and the young grubs reared.

That the construction of such a nest is not a merely agreeable exercise to the mason-bee has been sufficiently proved by M. Du Hamel. He has observed a bee less careful to perform the necessary labour for the protection of her offspring than those we have described, but not less desirous of obtaining this protection, attempt to usurp the nest which another had formed. A fierce battle was invariably the consequence of this attempt; for the true mistress would never give place to the intruder. The motive for the injustice and the resistance was an indisposition to further labour. The trial of strength was probably, sometimes, of as little use in establishing the right as it is amongst mankind; and the proper owner, exhausted by her efforts, had doubtless often to surrender to the dishonest usurper.

The account which R?aumur has given of the operations of this class of bees differs considerably from that which we have here detailed; from the species being different, or from his bees not having been able to procure moist clay. On the contrary, sand was the chief material used by the mason-bees ; which they had the patience to select from the walks of a garden, and knead into a paste or mortar, adapted to their building. They had consequently to expend a much greater quantity of saliva than our bees , which worked with moist clay. R?aumur, indeed, ascertained that every individual grain of sand is moistened previous to its being joined to the pellet, in order to make it adhere more effectually. The tenacity of the mass is, besides, rendered stronger, he tells us, by adding a proportion of earth or garden-mould. In this manner, a ball of mortar is formed, about the size of a small shot, and carried off to the nest. When the structure of this is examined, it has all the appearance externally of being composed of earth and small stones or gravel. The ancients, who were by no means accurate naturalists, having observed bees carrying pellets of earth and small stones, supposed that they employed these to add to their weight, in order to steady their flight when impeded by the wind.

The nests thus constructed appear to have been more durable edifices than those which have fallen under our observation;--for R?aumur says they were harder than many sorts of stone, and could scarcely be penetrated with a knife. Ours, on the contrary, do not seem harder than a piece of sun-baked clay, and by no means so hard as brick. One circumstance appeared inexplicable to R?aumur and his friend Du Hamel, who studied the operations of these insects in concert. After taking a portion of sand from one part of the garden-walk, the bees usually took another portion from a spot almost twenty and sometimes a hundred paces off, though the sand, so far as could be judged by close examination, was precisely the same in the two places. We should be disposed to refer this more to the restless character of the insect than to any difference in the sand. We have observed a wasp paring the outside of a plank, for materials to form its nest; and though the plank was as uniform in the qualities of its surface, nay, probably more so than the sand could be, the wasp fidgeted about, nibbling a fibre from one, and a fibre from another portion, till enough was procured for one load. In the same way, the whole tribe of wasps and bees flit restlessly from flower to flower, not unfrequently revisiting the same blossom, again and again, within a few seconds. It appears to us, indeed, to be far from improbable, that this very restlessness and irritability may be one of the springs of their unceasing industry.

The very different behaviour of the insect here, and at the quarry, struck us as not a little remarkable. When digging and preparing the clay, our approach, however near, produced no alarm; the work went on as if we had been at a distance; and though we were standing close to the hole, this did not scare away any of the bees upon their arrival to procure a fresh load. But if we stood near the nest, or even in the way by which the bee flew to it, she turned back or made a wide circuit immediately, as if afraid to betray the site of her domicile. We even observed her turning back, when we were so distant that it could not reasonably be supposed she was jealous of us; but probably she had detected some prowling insect depredator, tracking her flight with designs upon her provision for her future progeny. We imagined we could perceive not a little art in her jealous caution, for she would alight on the tiles as if to rest herself; and even when she had entered the coal-house, she did not go directly to her nest, but again rested on a shelf, and at other times pretended to examine several crevices in the wall, at some distance from the nest. But when there was nothing to alarm her, she flew directly to the spot, and began eagerly to add to the building.

It is in instances such as these, which exhibit the adaptation of instinct to circumstances, that our reason finds the greatest difficulty in explaining the governing principle of the minds of the inferior animals. The mason-bee makes her nest by an invariable rule; the model is in her mind, as it has been in the mind of her race from their first creation: they have learnt nothing by experience. But the mode in which they accomplish this task varies according to the situations in which they are placed. They appear to have a glimmering of reason, employed as an accessary and instrument of their instinct.

There was one circumstance attending the proceedings of this mason-bee which struck us not a little, though we could not explain it to our own satisfaction. Every time she left her nest for the purpose of procuring a fresh supply of materials, she paid a regular visit to the blossoms of a lilac-tree which grew near. Had these blossoms afforded a supply of pollen, with which she could have replenished her cells, we could have easily understood her design; but the pollen of the lilac is not suitable for this purpose, and that she had never used it was proved by all the pollen in the cells being yellow, whereas that of the lilac is of the same pale purple colour as the flowers. Besides, she did not return immediately from the lilac-tree to the building, but always went for a load of clay. There seemed to us, therefore, to be only two ways to explain the circumstance:--she must either have applied to the lilac-blossoms to obtain a refreshment of honey, or to procure glutinous materials to mix with the clay.

When employed upon the building itself, the bee exhibited the restless disposition peculiar to most hymenopterous insects; for she did not go on with one particular portion of her wall, but ran about from place to place every time she came to work. At first, when we saw her running from the bottom to the top of her building, we naturally imagined that she went up for some of the bricklayer's mortar to mix with her own materials; but upon minutely examining the walls afterwards, no lime could be discovered in their structure similar to that which was apparent in the nest found in the wall of Greenwich Park.

R?aumur mentions another sort of mason-bee, which selects a small cavity in a stone, in which she forms her nest of garden-mould moistened with gluten, and afterwards closes the whole with the same material.

Add to tbrJar First Page Next Page

Back to top Use Dark Theme