Read Ebook: Crystals by Tutton A E H Alfred Edwin Howard
Font size: Background color: Text color: Add to tbrJar First Page Next Page Prev PageEbook has 552 lines and 51991 words, and 12 pagesThis hemimorphism of the two kinds of crystals will be rendered clear by Figs. 63 and 64, representing typical crystals of dextro and laevo tartaric acids which are obviously the mirror images of each other. which is obtained by adding ammonia to the readily procurable salt hydrogen sodium racemate. Sodium ammonium racemate was found by Pasteur to be decomposable into the salts of dextro and laevo tartaric acids, on crystallisation of a solution saturated at 28? C. by inoculation with a crystal of either of those active salts. The solution on cooling being in the state of slight supersaturation, which we now know from the work of Ostwald and of Miers as the metastable condition, corresponding to the interval between the solubility and supersolubility curves , if a crystal say of sodium ammonium laevo-tartrate be introduced, this variety crystallises out first and can be separated from the residual dextro-salt, which can then be subsequently crystallised. Moreover, in certain direct crystallisations of sodium ammonium racemate without such specialised inoculation, Pasteur found all the crystals hemimorphic, some right-handed and some left-handed, and he was actually able to isolate from each other crystals of the two varieties. On separate recrystallisation of these two sets of crystals, he found them to retain permanently their right or left-handed character, indicating that the molecules themselves composing these crystals were enantiomorphous. Their solutions correspondingly rotated the plane of polarisation of light in opposite directions. Pasteur afterwards obtained from the dextro-salt pure ordinary tartaric acid, and from the laevo-salt the laevo-acid, by converting them first into the lead salts and then precipitating the lead as sulphide by sulphuretted hydrogen. In the case of laevo tartaric acid, this was its first isolation, as it had hitherto been unknown. Gernez afterwards independently found that a saturated solution of sodium ammonium racemate affords crystals of the laevo-salt just as readily as of the dextro-salt; if a crystal of either salt be introduced, crystals corresponding to that variety are produced. The crystals of both dextro and laevo tartaric acids prove to be pyro-electric, that is, develop electric excitation when slightly heated. The end which exhibits the development of the clinodome develops positive electricity in each case, when the crystal is allowed to cool after warming, so that the two varieties are oppositely pyro-electric, just as they are oppositely optically active. The most convenient method of demonstrating the fact is to dust a little of Kundt's powder, a mixture of finely powdered red lead and sulphur, through a fine muslin sieve on to the crystal as it cools. The sulphur becomes negatively electrified and the red lead positively by mutual friction of the particles in the sifting, and the sulphur thus attaches itself to the positively electrified part of the crystal and the red lead to the negatively electrified end. This phenomenon of the development by the two varieties of an optically active substance of opposite electrical polarity has since been shown to be a general one. Finally, on mixing concentrated solutions containing equivalent weights of dextro and laevo tartaric acid Pasteur observed that heat was evolved, a sign of chemical combination, and the solution afterwards deposited on cooling crystals of racemic acid. Hence, the only conclusion possible is that racemic acid must be a molecular compound of the two oppositely optically active tartaric acids. It thus partakes of the character of a double salt, analogous to potassium magnesium sulphate for instance. Consequently the crystal structure is one in which alternating molecules of the two acids are uniformly distributed, and the case is actually presented of two oppositely enantiomorphous sets of molecules producing a homogeneous structure. This interesting pioneer case of tartaric acid has been the cause of the term "racemic" being applied to the inactive form of a substance when it is decomposable into two oppositely optically active enantiomorphous varieties of the substance. No well authenticated exception has been found, in all the many instances which have been observed of the phenomenon since Pasteur's time, to the fact that optically active substances exhibit what was formerly termed hemihedrism; that is, expressing the case in accordance with our later more accurate ideas of crystal structure as elucidated in previous chapters, such substances invariably belong to classes of symmetry possessing less than the full number of elements of symmetry possible to the system to which the class belongs. These classes are eleven in number, those possessing no plane of symmetry; they are, namely, the asymmetric class of the triclinic system, the sphenoidal class of the monoclinic system , the bisphenoidal class of the rhombic system, the pyramidal and trapezohedral classes of the trigonal, tetragonal, and hexagonal systems, and the tetrahedral-pentagonal-dodecahedral and pentagonal-icositetrahedral classes of the cubic system. The optical activity has been proved by Le Bel and Van t'Hoff to be due in most cases to enantiomorphism of the chemical molecules, that is, to the enantiomorphous stereometric arrangement of the atoms in the molecules, and therefore also,--as we have just seen, in accordance with the geometrical theory of crystal structure,--of the combined point-system in the case of each of the two varieties. The point-systems are probably of a spiral screw-like character, either right-handed or left-handed, as has been shown by Sohncke to be the case for the two varieties of quartz, which crystallises in the trapezohedral class of the trigonal system, one of the eleven classes just enumerated. The example afforded by quartz will be developed fully in the next two chapters, as this beautifully crystallised mineral enables us to study and to demonstrate the phenomena of optical activity in a unique manner and on the large scale. The two "optical antipodes," as the dextro and laevo varieties are conveniently termed, of an optically active substance thus possess an enantiomorphous crystal structure; but they are alike in their physical properties such as density, melting point, optical refraction and optic axial angle, cleavage, and elasticity. The crystal angles are identical for the forms which are developed in common by them, and which are usually those which the particular low class of symmetry possesses in common with the holohedral class of the system. The crystallographic difference between the two varieties comes in with respect to the specific forms characteristic of the particular class of lower than full systematic symmetry, and these forms are never displayed in common by the two varieties, this being the essence of the enantiomorphism. When the crystals are not rich in faces, however, it frequently happens that only the common forms of higher symmetry just referred to are developed on the crystals, and the two varieties are then indistinguishable in exterior configuration; it is only on testing their rotatory power, either by means of a section-plate of the crystal or by means of a solution, or their pyro-electric properties, or, lastly, their etch-figures afforded by a trace of a solvent , that their real character can be ascertained. Many mistakes have been made in the past, and crystals assigned to a higher than their true class of symmetry, owing to the investigation of only a single crop of crystals fortuitously poor in the number of forms displayed. In the racemic form, if one should be deposited from the mixed solutions of the two optical antipodes as a molecular compound of the latter, we have an occurrence akin to polymerism, that is, the combination into a single whole entity of a number of molecules, essentially two in the case of racemism. Just as polymeric varieties of organic substances are always found to have quite different crystalline forms, so an optically inactive racemic form of a substance is generally quite different crystallographically to the dextro and laevo varieties. But there is usually some similarity along specific zones of the crystals, a kind of isogonism or morphotropy being developed, such as has been shown to occur, for instance, by Armstrong and Pope in the case of the substance sobrerol. "We define a pseudo-racemic substance as an intercalation of an equal, or approximately equal, proportion of two enantiomorphously related components, each of which preserves its characteristic type of crystalline structure, but is so intercalated with the other as to form a crystalline individual of non-homogeneous structure. A solid racemic compound, on the other hand, may be defined as a crystalline substance of homogeneous structure which contains an equal proportion of two enantiomorphously related isomerides. "The relations holding between a mere mixture of optical antipodes, a pseudo-racemic substance, and a racemic compound, are closely parallel to those existing between a crystalline mixture, an isomorphous mixture, and a double salt. The crystallographic methods, by which a double salt can be distinguished from an isomorphous mixture, may be directly applied to distinguish between racemic and pseudo-racemic substances. Thus, according as the crystalline substance obtained from a mixture of two salts resembles or differs from either of its components crystallographically, it is regarded either as an isomorphous mixture or a double salt; similarly, an inactive externally compensated substance, which closely resembles its active isomerides crystallographically, is to be considered as pseudo-racemic, whereas when the contrary is true, it is to be regarded as racemic." The work of Kipping and Pope may be regarded as having finally vindicated and substantiated the law of Pasteur, that substances of enantiomorphous molecular configuration develop enantiomorphous crystalline structures, and that the crystal structures assumed by enantiomorphously related molecular configurations are themselves enantiomorphously related. Now glyceric acid, has manifestly one so-called asymmetric carbon atom , that belonging to the CHOH group. There are consequently two possible arrangements of the molecule in space, probably corresponding to the two optically active varieties, namely, those represented, as far as is possible in one plane, as below, the asymmetric carbon atom being supposed to be at the centre of the tetrahedron, which is usually taken to represent a carbon atom with its four valencies. The crystals were colourless well-formed prisms which proved to be of monoclinic symmetry, the best individuals being formed by very slow evaporation of the aqueous solution. They were terminated at both ends by pyramid and dome faces, and sometimes grew to the length of a centimetre. The actual crystal elements found after a full series of measurements were as under:-- CALCIUM DEXTRO-GLYCERATE. The following table represents the results of the angular measurements, twelve different well-formed individual crystals having been employed. The angles marked with an asterisk were the important angles the mean observed values of which were accepted as correct, being the best measured angles, and which were therefore used as the basis of the calculations. Angle measured. No. of Limits. Mean Calculated. measurements. observed. . The intermediate refractive index ? was found to be as under-- For red lithium light 1.4496 ,, yellow sodium ,, 1.4521 ,, green thallium ,, 1.4545 The double refraction was also determined and found to be of positive sign. The optical properties of calcium dextro-glycerate thus confirm absolutely the monoclinic nature of the symmetry, as regards the crystal system. And it was conclusively demonstrated by the goniometrical part of the investigation that the exterior symmetry was not such as agreed with holohedral monoclinic symmetry, but with that of the sphenoidal class, in which the only one of the two elements of monoclinic symmetry in operation is the digonal axis, thus leaving the two terminations of that axis, at opposite sides, right and left, of the possible symmetry plane, unsymmetrical. And this is precisely the symmetry which is characteristic of an enantiomorphous optically active substance. A concrete instance like this, worked out practically in the laboratory, brings home the precise nature of this interesting relationship, between crystallographic and molecular enantiomorphism on the one hand and optical activity on the other hand, in a particularly clear and forcible manner. It is hoped that this brief account of it will also consequently have been of assistance to the reader, in more clearly appreciating the main points of this chapter. The action of transparent crystals on the rays of light which they transmit is a subject not only of the deepest interest, but also of the utmost importance. For it is immediately possible to detect a cubic crystal, and to discriminate between two groups, optically uniaxial and biaxial respectively, of the other six systems of symmetry, three systems going to each group, by this means alone. For a cubic crystal is singly refractive in all directions. A 60?-prism, for instance, cut from a cube of rock-salt, for the purpose of obtaining the refractive index of the mineral by the ordinary method of producing a spectrum and arranging it for minimum deviation of the refracted rays, affords but a single spectrum, or a single sharp image of the spectrometer slit when the latter is fed by pure monochromatic light instead of ordinary white light. This is true however the prism may have been cut, as regards its orientation with respect to the natural crystal faces. But a 60?-prism cut from a crystal belonging to the optically biaxial group, composed of the rhombic, monoclinic, and triclinic systems of symmetry, will always afford two images of the slit or two spectra, corresponding to two indices of refraction; and, when the orientation of the prism is arranged so that the refracting angle is bisected by a principal plane of the ellipsoid which represents the optical properties, and the refracting edge is parallel to one of the principal axes of the optical ellipsoid, the prism, when arranged for minimum deviation of the light rays, will at once afford two of the three refractive indices, ?, ?, ?, corresponding to light vibrations along two of the three principal axial directions of the ellipsoid. The two indices which the prism affords will be the one which corresponds to vibrations parallel to the refracting edge, and that which corresponds to undulations perpendicular to the edge and to the direction of transmission of the light through the prism . For the vibrations of the light in the two rays into which the beam is divided on entering the crystal are both perpendicular to the direction of transmission and to each other; the two images or spectra produced owing to the double refraction, that is, owing to the different velocities of the two mutually rectangularly vibrating rays, thus correctly afford the means of determining two of the three principal refractive indices. If a second prism be cut complementarily to the first, that is, so that the refracting edge is parallel to the third axis of the ellipsoid and the bisecting plane again parallel to one of the three axial planes of the ellipsoid, such a prism will also yield two refracted images corresponding to two indices; one of them, that particular image the vibrations of which are parallel to the refracting edge, will correspond to that one of the three principal indices which was not given by the first prism, while the other one will afford a duplicate determination of one of the two indices afforded by the first prism. Hence, a couple of such axially orientated prisms of a rhombic, monoclinic, or triclinic crystal will enable us to determine all three refractive indices, and one of them in duplicate, which latter fact will enable us to check the accuracy of our work. If the 60?-prism be cut from a crystal of the uniaxial group, that is, from a hexagonal, tetragonal, or trigonal crystal--quartz or calcite being admirable examples of the latter and particularly suitable for demonstration purposes--it will generally afford two spectra in the same manner as a crystal of the three birefringent systems of lower symmetry. But there is one special mode of cutting which results in the prism exhibiting only a single spectrum, namely, when the hexagonal, tetragonal, or trigonal axis of symmetry, which is also the unique "optic axis" of the crystal along which there is no double refraction, is arranged to be perpendicular to the bisecting plane of the 60?-prism. For then the light is transmitted along this unique axial direction when the prism is arranged for the minimum deviation of the refracted rays out of their original path, and as it may vibrate in any direction perpendicular thereto with equal velocity there is no separation into two rays, that is, no double refraction, and thus only a single spectrum is afforded by such a prism in white light, or a single image of the slit in monochromatic light, and this latter will at once yield the refractive index which is generally indicated conventionally by the letter ?, corresponding to light vibrations perpendicular to the axis. Spectroscopists take advantage of this interesting fact, when they employ a train of quartz prisms so cut in order to explore the violet and ultra-violet region of the spectrum; for quartz transmits many of the ultra-violet rays which glass absorbs. Each prism gives only a single image like glass, whereas if it were otherwise cut it would give two spectra, which would so complicate matters as to render quartz useless for the purpose. When the prism of quartz or calcite, or of any hexagonal, tetragonal, or trigonal substance, is cut so that the rays of light are transmitted through it perpendicularly to the axis, and so that the refracting edge is parallel to the axis, the light is broken up into two rays, one of which is composed of light vibrating parallel to the edge and therefore to the axis, and the other of light vibrating perpendicularly to the axis. Such a prism consequently affords the two principal extreme refractive indices of the crystal, ? and ?, the latter letter being always assigned to the refractive index of a uniaxial crystal corresponding to vibrations parallel to the axis. A uniaxial crystal, one belonging to the hexagonal, tetragonal, or trigonal systems, has thus two principal refractive indices, ? and ?, while a biaxial crystal, one belonging to the rhombic, monoclinic, or triclinic systems of symmetry, has three, ?, ?, ?, corresponding to vibrations respectively parallel to the three rectangular axial directions of the optical ellipsoid, which are also the crystallographic axial directions in the case of a rhombic crystal. The index ? is the minimum, and ? the maximum refractive index,the ? index being intermediate; when the latter lies nearer to ? in value, the crystal is said to be a positive one, but when nearer to ? the crystal is conventionally supposed to be negative. Similarly, when in a uniaxial crystal ? is the greater, as it is in the case of quartz, the crystal is termed positive, but if ? be the greater index, as happens in the case of calcite, then the crystal is by convention considered negative. Just as in the case of gypsum, which is a positive biaxial crystal , when the two spectra afforded by a prism of calcite or quartz cut to afford both ? and ? are examined in plane polarised light, by introducing a Nicol prism somewhere in the path of the light, the two images corresponding respectively to ? and ? will be found to be produced by light polarised in two planes at right angles to each other. For when the Nicol is at its 0? position one will be extinguished, and when it is at 90? the other will be quenched. At the 45? position of the Nicol both images will be visible with their partial intensities, as happens also in the cases of biaxial prisms. This behaviour of 60?-prisms of crystals belonging to the seven different styles of crystal architecture, as compared with a prism of glass or other transparent non-crystalline substance, is extremely instructive. For not only is the optical constant refractive index--the measure of the power exhibited by the crystal of bending light, corresponding to its effect in retarding by the nature of its internal structure the velocity of the light vibrations--the most important of all the optical constants, but also in the course of its determination we learn more of the behaviour of crystals towards light than from any other type of optical experiment. If a single spectrum be afforded, which remains single on rotation of the Nicol, the prism is of glass or of a uniaxial crystal cut so that the light passes along the optic axis. If two spectra be shown when the Nicol is arranged in the neighbourhood of its 45? position, the crystal is a doubly refracting one, and if orientated so that the single optic axis, if the crystal be uniaxial, is parallel to the refracting edge, or, if the crystal be biaxial, so that the refracting edge is parallel to one of the three principal axes of the optical ellipsoid and its bisecting plane is parallel not only to this but also to a second principal axis, then one spectrum, corresponding to one principal refractive index, will extinguish when the Nicol is rotated to its 0? position, and the other spectrum, corresponding to a second principal refractive index, will be quenched on rotation of the Nicol to its 90? position. The separation of the two spectra on the screen depends on the amount of the double refraction, and in the case of calcite this is exceptionally large, so that the two spectra are widely separated on the screen. They differ also considerably in dispersion. In the case of quartz the double refraction is very small, and the spectral images of the slit are consequently so close together as almost to touch one another. The pair of spectra afforded by gypsum are similarly very close together, owing also to weak double refraction. The amount of the double refraction is measured by the difference between the uniaxial indices ? and ?, or that between the minimum and maximum biaxial indices ? and ?. The two spectra given by quartz and calcite will correspond to ? and ?, and the greatest separation of spectra occurs in the case of gypsum when the spectra are those corresponding to ? and ?, and not to ? and ? or ? and ?. It will now be useful and very helpful to examine more closely into the nature of the beautiful mineral quartz, in order that a series of interesting experiments may be described with it, which will assist largely in rendering the optical characters of crystals clear to us. There is one principal form which is common to both the hexagonal and trigonal systems, namely, the hexagonal prism, and this is the chief form exhibited by quartz crystals. They are terminated by an apparently hexagonal pyramid, but which really consists of a pair of complementary rhombohedra, which are purely trigonal forms; three upper faces of each rhombohedron are developed at one end of the prism which may be regarded as the upper, and the three lower faces of each of the two individual rhombohedra likewise at the lower end of a fully developed doubly terminated crystal. The rhombohedron is the characteristic form of the trigonal system of crystal symmetry, the systematic crystallographic axes being parallel to its edges. It is like a cube deformed by extension or compression along a diagonal, which latter is arranged vertically, and becomes the trigonal axis of symmetry , as shown in Fig. 70. When two rhombohedra are equally developed, one being rotated with respect to the other 60? round the vertical trigonal axis of symmetry, they together resemble a hexagonal pyramid, and crystals of quartz thus terminated at both ends are not uncommon, so that at first sight a quartz crystal might be mistaken for a hexagonal prism doubly terminated by the hexagonal pyramid, and the mineral considered, in error, to belong to the hexagonal system. But one alternate set of three faces of the hexagonal pyramid at one end, and the oppositely alternate set of three similar faces at the other end, will usually be found to be much less brilliant than the other alternate three, and very frequently also the amount of development is markedly different, both facts indicating that the terminal faces belong to two different but complementary rhombohedral forms, and that the system of symmetry is the trigonal and not hexagonal. As quartz possesses the symmetry of the trigonal system and is thus optically uniaxial, its optical properties are expressed, in common with those of all trigonal, tetragonal, and hexagonal crystals, by an ellipsoid of revolution, an ellipsoid the section of which perpendicular to the principal axis--that of revolution, the maximum or minimum diameter of the ellipsoid--is a circle. The optical properties are consequently the same in all directions round this axis, which has already been referred to by its common appellation of the "optic axis." The optic axis is identical in direction with the trigonal axis of symmetry in the case of quartz or other trigonal crystal, and in the cases of hexagonal and tetragonal crystals with the axes of hexagonal and tetragonal symmetry, these three axes of specific symmetry being the distinctive property of these three respective systems, which are thus known in common as optically "uniaxial." The result of this difference in the amount of the double refraction of the two minerals quartz and calcite is very interesting as regards their behaviour with polarised light. A thin plate of quartz, such as is often found in the slices of rock sections employed for microscopic investigation, of muscovite granite or quartz porphyry for instance, and which is usually about one-fiftieth of a millimetre in thickness, shows brilliant colours in a parallel beam of polarised light, the Nicol prisms of the polarising microscope being crossed for the production of the dark field before the introduction of the section-plate on the stage. This is only true, however, when the plate has not been cut perpendicularly to the axis, for such a thin plate thus cut does not perceptibly affect the dark field, there being no double refraction of rays transmitted along the axis, and the interference colours afforded by crystal plates in polarised light being due to the interference of the two rays produced by double refraction, one of which is retarded behind the other so as to be in a different phase of vibration. Also, the plate, even when cut obliquely, and best of all parallel, to the axis, has to be rotated in its own plane , to the favourable position for the production of the most brilliant colour. This especially favourable position is halfway between the positions at which darkness is afforded by the plate. For on rotating the plate between the crossed Nicols it becomes four times dark during a complete revolution, and at places exactly 90? apart, known as the "extinction positions," whenever, in fact, that plane perpendicular to the plate which contains the optic axis is parallel to the plane of polarisation of either the polarising or analysing Nicol. At the intermediate 45? positions the maximum colour is produced. The colour owes its origin, as already mentioned, to the interference of the two rays, corresponding to the two refractive indices, into which the light is divided on entering the crystal in any direction except along the axis. For one of the rays is retarded behind the other owing to the difference in velocity which is expressed reciprocally by the refractive indices, and thus a difference of phase is produced between the two light-wave motions, with the inevitable result of interference when the vibrations have been reduced to the same plane by the analyser; light of one particular wave-length is then extinguished, and the plate therefore exhibits a tint in which the complementary colour to that extinguished predominates. The light which leaves the polarising Nicol is vibrating in one plane, but on reaching the crystal this is resolved into two rays vibrating at right angles to each other, and at 45? on each side of its previous direction of vibration, supposing the crystal to be arranged for the production of most brilliant colour. On reaching the analysing Nicol, the function of which is to bring the two vibrations again into the same plane, these two rays are each separately resolved back to the planes of vibration of the two Nicols, and that pair vibrating parallel to the analysing Nicol are transmitted, while the other pair are extinguished. The two former rays thus surviving, one individual ray of the two having one refractive index and the other individual the other index, are thus in a position to interfere; for they are composed of vibrations in the same plane and of practically the same intensity, and differ only in phase. Extinction occurs when this amounts to half a wave-length, or an odd multiple of this, to which, however, requires to be added half a wave difference of phase which is introduced by the operation of the analyser. This explanation is a general one, applicable to thin plates of crystals belonging to all the six systems of symmetry other than the cubic. For plates of the latter, unless they are in an abnormal condition of strain, do not polarise. When we take a plate of calcite of the same small thickness as that of the quartz in a rock section, thinner than a sheet of thin paper, we find that the calcite does not polarise. So great is the retardation of one of the two rays behind the other in calcite, that a plate excessively thin is required in order that colour shall be observed. For the colours of crystal plates under the polariscope, due to double refraction, are subject to the same laws as the colours of thin films, namely, that as the thickness increases--introducing more and more retardation in the case of a crystal, just as in a thin film greater length of path is introduced with increase of thickness--the various tints of all the seven orders of Newton's spectra are exhibited in turn, each spectrum differing by one further wave-length of retardation, and after the seventh the white of the higher orders gives place to true white light, colour being no longer perceptible. Hence with calcite, owing to the extremely powerful double refraction, and therefore very considerable retardation of the slower ray behind the quicker, a plate a fiftieth of a millimetre only in thickness already shows the white of the higher orders, that is, appears only very feebly tinted with colour, and a plate of calcite very much thinner still is required to show brilliant colours. A plate of calcite, therefore, cut obliquely or parallel to the optic axis, of the thickness of a rock section or thicker, simply appears four times dark and four times light alternately, at positions 45? apart, as the section-plate is rotated in its own plane perpendicular to the axis of the polariscope. When a plate of either quartz or calcite one-fiftieth of an inch thick, cut perpendicularly to the optic axis, is examined under the polariscope or polarising microscope, the dark field is unaffected by its introduction on the stage, remaining dark on a complete rotation of the crystal plate in its own plane. Moreover, the calcite plate continues to behave similarly however much the thickness is increased, the field remaining dark. But when quartz is examined as regards the effect of thickness an extraordinary thing happens. As the plate is thickened, that is, as a series of plates of gradually increasing thickness are successively placed on the stage, the dark field begins to brighten, and eventually colour makes its appearance. Moreover, rotation of the plate in its own plane--supposing the latter to be strictly perpendicular to the axis of the polariscope and the plate itself to have been truly cut perpendicularly to the optic axis of the quartz crystal--produces no change whatever, the colour remaining the same and evenly distributed over the plate, thus differing from the previous phenomena of interference due to double refraction. When monochromatic light is employed, yellow sodium light for instance, it is found that if the plate be not too thick, say a millimetre in thickness, the dark field is restored when the analyser is rotated in a particular direction, either to the right or to the left, for a specific angle, which is 21? 42? for a plate of quartz one millimetre thick. Moreover, if the plate has been cut from a crystal showing the distinctive trapezohedral-class faces s and x on the right the analysing Nicol requires to be rotated to the right; whereas if the plate has been cut from a crystal showing these little determinative faces on the left the analyser has to be rotated to the left in order to quench the light. It is obvious, therefore, that the colours of these thicker plates of quartz are due to the phenomenon of "optical activity." The original plane of polarisation of the light received from the polarising Nicol is rotated by the quartz plate, and to an extent which is directly proportional to the thickness. When white light is used a particular colour is extinguished for each position of the analyser, and the complementary colour therefore predominates in the tint actually exhibited. Now the most intensely luminous part of the spectrum is about wave-length 0.000550 millimetre in the yellow, and in the case of a plate of quartz 7.5 millimetres thick this colour is extinguished when the Nicols are crossed, while a plate of half this thickness, 3.75 mm., actually exhibits the colour under crossed Nicols and extinguishes it under parallel Nicols. For the angle of rotation of the plane of polarisation for light of this wave-length is 90? for a plate 3.75 mm. thick, so that the analyser has to be turned through a right angle from the crossed position, that is, placed parallel to the polariser, in order to extinguish this colour. A plate of double the thickness, 7.5 mm., will require the analyser to be rotated through 180?, the angle of rotation for this thickness of plate, in order to extinguish this yellow ray. But 180? rotation simply brings the Nicol again to the crossed position, so that no rotation is really necessary at all. Now the complementary colour to the yellow of wave-length 0.000550 mm. is the transition violet tint, the well-known "tint of passage" between the brilliant red end of the first order spectrum of Newton and the deep blue of the beginning of the second order. Hence, this violet tint is afforded by a plate of 7.5 mm. thickness when the Nicols are crossed, and by a plate of 3.75 mm. thickness when they are parallel. When, therefore, these plates are examined respectively under crossed and parallel Nicols, and the analysing Nicol is turned ever so little, the tint changes remarkably rapidly into brilliant red or blue, according to the direction of the rotation of the Nicol and the nature, whether right or left-handed, of the quartz. Moreover, when two complementary plates of each thickness are thus examined, one of each pair being cut from a right-handed crystal and the other from a left-handed one, the colour will be red in one case and blue in the other for the same direction of rotation of the analyser. A composite plate is frequently found very useful in work in connection with optical rotation, and is known as a "biquartz," two plates of opposite rotations being cemented together by Canada balsam, the plane of junction being made perpendicular to the plate so as to be almost invisible when the plate is examined normally. When polarised light is employed, the least rotation of the analyser from exact crossing with the polariser, for which the violet transition tint is evenly produced over the whole composite plate, causes the half on one side of the plane of junction to turn red and the other half to turn blue or green. This, in essence, is the nature of the optical activity of quartz, and the secondary effects derived from it influence all the optical phenomena afforded by this interesting mineral. Owing to the fact that quartz crystals are practically unendowed with any facility for cleavage, the natural rhombohedral cleavage being very imperfectly developed and rarely seen, it is possible to cut, grind, and polish large plates of this beautiful, colourless, and limpidly transparent mineral without a trace of flaw. Such quartz plates of large size, adequate to fill the field of a large projection polariscope, the stage aperture of which is nearly 2 inches in diameter, form magnificent polarising objects for the projection on the screen of the effects observed in polarised light. As many of the optical properties of crystals may be illustrated with their aid, it is proposed in the next two chapters to describe a few of the more interesting screen experiments which can be performed with quartz, first in convergent polarised light, and then in parallel polarised light, and thus to illustrate the facts relating to the connection between optical activity and the internal structure of crystals in a manner which will at the same time be interesting and will lead to their much clearer comprehension. The experiments described are largely those with which the author illustrated his lecture to the British Association for the Advancement of Science during their 1909 meeting at Winnipeg. It has already been shown that crystals are optically divisible into two classes characterised respectively by single and by double refraction. Singly refractive crystals belong exclusively to the system of highest symmetry, the cubic. They afford obviously only one index of refraction, which is generally symbolised by the Greek letter ?, the value of this constant being the same for all directions throughout the crystal. Crystals of the other six systems of symmetry are all doubly refractive. Those of the trigonal, tetragonal, and hexagonal systems have been shown in the last chapter to possess two refractive indices, a maximum and a minimum, one represented by ? corresponding to light vibrating parallel to the singular axis of the system, the trigonal, tetragonal, or hexagonal axis of symmetry, and another signified by ? corresponding to light vibrations perpendicular to that axis. For the properties are identical in all directions around this axis, which is thus the optic axis as well as the predominating crystallographic one. Such crystals are consequently known as "uniaxial." When ? is the larger refractive index the crystal is positive, while if ? be the maximum the crystal is said to be negative. It has been shown in the last chapter that quartz belongs to the positive category, while calcite is negative. Along the one direction of the optic axis these uniaxial crystals behave like singly refractive crystals do in all directions. Add to tbrJar First Page Next Page Prev Page |
Terms of Use Stock Market News! © gutenberg.org.in2025 All Rights reserved.