Read Ebook: Novum organon renovatum Being the second part of the philosophy of the inductive sciences by Whewell William
Font size: Background color: Text color: Add to tbrJar First Page Next PageEbook has 189 lines and 124711 words, and 4 pagesINDUCTIVE TABLE OF ASTRONOMY 140 INDUCTIVE TABLE OF OPTICS 140 BOOK IV, OF THE LANGUAGE OF SCIENCE. INTRODUCTION 257 APHORISMS CONCERNING THE LANGUAGE OF SCIENCE. } NOVUM ORGANON RENOVATUM. DE Scientiis tum demum bene sperandum est, quando per SCALAM veram et per gradus continuos, et non intermissos aut hiulcos, a particularibus ascendetur ad Axiomata minora, et deinde ad media, alia aliis superiora, et postremo demum ad generalissima. In constituendo autem Axiomate, Forma INDUCTIONIS alia quam adhuc in usu fuit, excogitanda est; et quae non ad Principia tantum probanda et invenienda, sed etiam ad Axiomata minora, et media, denique omnia. } NOVUM ORGANON RENOVATUM. Bacon has delivered his precepts in Aphorisms, some of them stated nakedly, others expanded into dissertations. The general results at which we have arrived by tracing the history of Scientific Ideas are the groundwork of such Precepts as we have to give: and I shall therefore begin by summing up these results in Aphorisms, referring to the former work for the historical proof that these Aphorisms are true. } NOVUM ORGANON RENOVATUM. APHORISMS CONCERNING IDEAS DERIVED FROM THE HISTORY OF IDEAS. XL. XC. NOVUM ORGANON RENOVATUM. OF THE CONSTRUCTION OF SCIENCE. OF TWO PRINCIPAL PROCESSES BY WHICH SCIENCE IS CONSTRUCTED. But after thus stating, in a general way, the nature of science, and the elements of which it consists, we have been examining with a more close and extensive scrutiny, some of those elements; and we must now return to our main subject, and apply to it the results of our long investigation. We have been exploring the realm of Ideas; we have been passing in review the difficulties in which the workings of our own minds involve us when we would make our conceptions consistent with themselves: and we have endeavoured to get a sight of the true solutions of these difficulties. We have now to inquire how the results of these long and laborious efforts of thought find their due place in the formation of our Knowledge. What do we gain by these attempts to make our notions distinct and consistent; and in what manner is the gain of which we thus become possessed, carried to the general treasure-house of our permanent and indestructible knowledge? After all this battling in the world of ideas, all this struggling with the shadowy and changing forms of intellectual perplexity, how do we secure to ourselves the fruits of our warfare, and assure ourselves that we have really pushed forwards the frontier of the empire of Science? It is by such an appropriation, that the task which we have had in our hands during the two previous works, must acquire its real value and true place in our design. OF THE EXPLICATION OF CONCEPTIONS. In the several Books of the History of Ideas we have discussed a great many of the Fundamental Ideas of the most important existing sciences. We have, in those Books, abundant exemplifications of the process now under our consideration. We shall here add a few general remarks, suggested by the survey which we have thus made. Thus discussions and speculations concerning the import of very abstract and general terms and notions, may be, and in reality have been, far from useless and barren. Such discussions arose from the desire of men to impress their opinions on others, but they had the effect of making the opinions much more clear and distinct. In trying to make others understand them, they learnt to understand themselves. Their speculations were begun in twilight, and ended in the full brilliance of day. It was not easily and at once, without expenditure of labour or time, that men arrived at those notions which now form the elements of our knowledge; on the contrary, we have, in the history of science, seen how hard, discoverers, and the forerunners of discoverers, have had to struggle with the indistinctness and obscurity of the intellect, before they could advance to the critical point at which truth became clearly visible. And so long as, in this advance, some speculators were more forward than others, there was a natural and inevitable ground of difference of opinion, of argumentation, of wrangling. But the tendency of all such controversy is to diffuse truth and to dispel errour. Truth is consistent, and can bear the tug of war; Errour is incoherent, and falls to pieces in the struggle. True Conceptions can endure the sun, and become clearer as a fuller light is obtained; confused and inconsistent notions vanish like visionary spectres at the break of a brighter day. And thus all the controversies concerning such Conceptions as science involves, have ever ended in the establishment of the side on which the truth was found. If, on the other hand, we have under our consideration a proposition probably established, every step which we can make in giving distinctness and exactness to the Terms which this proposition involves, is an important step towards scientific truth. In such cases, any improvement in our Definition is a real advance in the explication of our Conception. The clearness of our impressions casts a light upon the Ideas which we contemplate and convey to others. With regard to the doctrine of the Four Elements indeed, the inapplicability of the conception of composition of qualities, required, perhaps, to be proved by some reference to facts. But this conception was devised at first, and accepted by succeeding times, in a blind and gratuitous manner, which could hardly have happened if men had been awake to the necessary condition of our knowledge;--that the conceptions which we introduce into our doctrines are not arbitrary or accidental notions, but certain peculiar modes of apprehension strictly determined by the subject of our speculations. Thus the knowledge that Clear and Appropriate Ideas are requisite for discovery, although it does not lead to any very precise precepts, or supersede the value of natural sagacity and inventiveness, may still be of use to us in our pursuit after truth. It may show us what course of research is, in each stage of science, recommended by the general analogy of the history of knowledge; and it may both save us from hopeless and barren paths of speculation, and make us advance with more courage and confidence, to know that we are looking for discoveries in the manner in which they have always hitherto been made. OF FACTS AS THE MATERIALS OF SCIENCE. But such maxims are far from being easy to apply, as a little examination will convince us. Thus the difficulty which we have been illustrating, of distinguishing Facts from inferences and from interpretations of facts, is not only great, but amounts to an impossibility. The separation at which we aimed in the outset of this discussion, and which was supposed to be necessary in order to obtain a firm groundwork for science, is found to be unattainable. We cannot obtain a sure basis of Facts, by rejecting all inferences and judgments of our own, for such inferences and judgments form an unavoidable element in all Facts. We cannot exclude our Ideas from our Perceptions, for our Perceptions involve our Ideas. The analysis of facts into Ideas and Sensations, which we have so often referred to, suggests the answer to this inquiry. We are not able, nor need we endeavour, to exclude Ideas from our Facts; but we may be able to discern, with perfect distinctness, the Ideas which we include. We cannot observe any phenomena without applying to them such Ideas as Space and Number, Cause and Resemblance, and usually, several others; but we may avoid applying these Ideas in a wavering or obscure manner, and confounding Ideas with one another. We cannot read any of the inscriptions which nature presents to us, without interpreting them by means of some language which we ourselves are accustomed to speak; but we may make it our business to acquaint ourselves perfectly with the language which we thus employ, and to interpret it according to the rigorous rules of grammar and analogy. This maxim, that when Facts are employed as the basis of Science, we must distinguish clearly the Ideas which they involve, and must apply these in a distinct and rigorous manner, will be found to be a more precise guide than we might perhaps at first expect. We may notice one or two Rules which flow from it. Armorum sonitum toto Germania coelo Audiit; insolitis tremuerunt motibus Alpes. Vox quoque per lucos vulgo exaudita silentes Ingens; et simulacra modis pallentia miris Visa sub obscurum noctis: pecudesque locutae. The mixture of fancy and emotion with the observation of facts has often disfigured them to an extent which is too familiar to all to need illustration. We have an example of this result, in the manner in which Comets are described in the treatises of the middle ages. In such works, these bodies are regularly distributed into several classes, accordingly as they assume the form of a sword, of a spear, of a cross, and so on. When such resemblances had become matters of interest, the impressions of the senses were governed, not by the rigorous conceptions of form and colour, but by these assumed images; and under these circumstances, we can attach little value to the statement of what was seen. In all such phenomena, the reference of the objects to the exact Ideas of Space, Number, Position, Motion, and the like, is the first step of Science: and accordingly, this reference was established at an early period in those sciences which made an early progress, as, for instance, Astronomy. Yet even in astronomy there appears to have been a period when the predominant conceptions of men in regarding the heavens and the stars pointed to mythical story and supernatural influence, rather than to mere relations of space, time, and motion: and of this primeval condition of those who gazed at the stars, we seem to have remnants in the Constellations, in the mythological Names of the Planets, and in the early prevalence of Astrology. It was only at a later period, when men had begun to measure the places, or at least to count the revolutions of the stars, that Astronomy had its birth. OF THE COLLIGATION OF FACTS. Since the true supposition is thus very frequently something altogether diverse from all the obvious conjectures and combinations, we see here how far we are from being able to reduce discovery to rule, or to give any precepts by which the want of real invention and sagacity shall be supplied. We may warn and encourage these faculties when they exist, but we cannot create them, or make great discoveries when they are absent. Before proceeding further, I shall speak of some characteristic marks which belong to such scientific processes as are now the subject of our consideration, and which may sometimes aid us in determining when the task has been rightly executed. OF CERTAIN CHARACTERISTICS OF SCIENTIFIC INDUCTION. The tendencies of our speculative nature, carrying us onwards in pursuit of symmetry and rule, and thus producing all true theories, perpetually show their vigour by overshooting the mark. They obtain something, by aiming at much more. They detect the order and connexion which exist, by conceiving imaginary relations of order and connexion which have no existence. Real discoveries are thus mixed with baseless assumptions; profound sagacity is combined with fanciful conjecture; not rarely, or in peculiar instances, but commonly, and in most cases; probably in all, if we could read the thoughts of discoverers as we read the books of Kepler. To try wrong guesses is, with most persons, the only way to hit upon right ones. The character of the true philosopher is, not that he never conjectures hazardously, but that his conjectures are clearly conceived, and brought into rigid contact with facts. He sees and compares distinctly the Ideas and the Things;--the relations of his notions to each other and to phenomena. Under these conditions, it is not only excusable, but necessary for him, to snatch at every semblance of general rule,--to try all promising forms of simplicity and symmetry. Men cannot help believing that the laws laid down by discoverers must be in a great measure identical with the real laws of nature, when the discoverers thus determine effects beforehand in the same manner in which nature herself determines them when the occasion occurs. Those who can do this, must, to a considerable extent, have detected nature's secret;--must have fixed upon the conditions to which she attends, and must have seized the rules by which she applies them. Such a coincidence of untried facts with speculative assertions cannot be the work of chance, but implies some large portion of truth in the principles on which the reasoning is founded. To trace order and law in that which has been observed, may be considered as interpreting what nature has written down for us, and will commonly prove that we understand her alphabet. But to predict what has not been observed, is to attempt ourselves to use the legislative phrases of nature; and when she responds plainly and precisely to that which we thus utter, we cannot but suppose that we have in a great measure made ourselves masters of the meaning and structure of her language. The prediction of results, even of the same kind as those which have been observed, in new cases, is a proof of real success in our inductive processes. No example can be pointed out, in the whole history of science, so far as I am aware, in which this Consilience of Inductions has given testimony in favour of an hypothesis afterwards discovered to be false. If we take one class of facts only, knowing the law which they follow, we may construct an hypothesis, or perhaps several, which may represent them: and as new circumstances are discovered, we may often adjust the hypothesis so as to correspond to these also. But when the hypothesis, of itself and without adjustment for the purpose, gives us the rule and reason of a class of facts not contemplated in its construction, we have a criterion of its reality, which has never yet been produced in favour of falsehood. Again; the Cartesian system of Vortices might be said to explain the primary phenomena of the revolutions of planets about the sun, and satellites about planets. But the elliptical form of the orbits required new suppositions. Bernoulli ascribed this curve to the shape of the planet, operating on the stream of the vortex in a manner similar to the rudder of a boat. But then the motions of the aphelia, and of the nodes,--the perturbations,--even the action of gravity towards the earth,--could not be accounted for without new and independent suppositions. Here was none of the simplicity of truth. The theory of Gravitation, on the other hand, became more simple as the facts to be explained became more numerous. The attraction of the sun accounted for the motions of the planets; the attraction of the planets was the cause of the motion of the satellites. But this being assumed, the perturbations, and the motions of the nodes and aphelia, only made it requisite to extend the attraction of the sun to the satellites, and that of the planets to each other:--the tides, the spheroidal form of the earth, the precession, still required nothing more than that the moon and sun should attract the parts of the earth, and that these should attract each other;--so that all the suppositions resolved themselves into the single one, of the universal gravitation of all matter. It is difficult to imagine a more convincing manifestation of simplicity and unity. Again, we find the same evidence of truth in the progress of the Undulatory Theory of light, in the course of its application from one class of facts to another. Thus we explain Reflection and Refraction by undulations; when we come to Thin Plates, the requisite 'fits' are already involved in our fundamental hypothesis, for they are the length of an undulation: the phenomena of Diffraction also require such intervals; and the intervals thus required agree exactly with the others in magnitude, so that no new property is needed. Polarization for a moment appears to require some new hypothesis; yet this is hardly the case; for the direction of our vibrations is hitherto arbitrary:--we allow polarization to decide it, and we suppose the undulations to be transverse. Having done this for the sake of Polarization, we turn to the phenomena of Double Refraction, and inquire what new hypothesis they require. But the answer is, that they require none: the supposition of transverse vibrations, which we have made in order to explain Polarization, gives us also the law of Double Refraction. Truth may give rise to such a coincidence; falsehood cannot. Again, the facts of Dipolarization come into view. But they hardly require any new assumption; for the difference of optical elasticity of crystals in different directions, which is already assumed in uniaxal crystals, is extended to biaxal exactly according to the law of symmetry; and this being done, the laws of the phenomena, curious and complex as they are, are fully explained. The phenomena of Circular Polarization by internal reflection, instead of requiring a new hypothesis, are found to be given by an interpretation of an apparently inexplicable result of an old hypothesis. The Circular Polarization of Quartz and the Double Refraction does indeed appear to require a new assumption, but still not one which at all disturbs the form of the theory; and in short, the whole history of this theory is a progress, constant and steady, often striking and startling, from one degree of evidence and consistence to another of a higher order. In the Emission Theory, on the other hand, as in the theory of solid epicycles, we see what we may consider as the natural course of things in the career of a false theory. Such a theory may, to a certain extent, explain the phenomena which it was at first contrived to meet; but every new class of facts requires a new supposition--an addition to the machinery: and as observation goes on, these incoherent appendages accumulate, till they overwhelm and upset the original frame-work. Such has been the hypothesis of the Material Emission of light. In its original form, it explained Reflection and Refraction: but the colours of Thin Plates added to it the Fits of easy Transmission and Reflection; the phenomena of Diffraction further invested the emitted particles with complex laws of Attraction and Repulsion; Polarization gave them Sides: Double Refraction subjected them to peculiar Forces emanating from the axes of the crystal: Finally, Dipolarization loaded them with the complex and unconnected contrivance of Moveable Polarization: and even when all this had been done, additional mechanism was wanting. There is here no unexpected success, no happy coincidence, no convergence of principles from remote quarters. The philosopher builds the machine, but its parts do not fit. They hold together only while he presses them. This is not the character of truth. OF THE LOGIC OF INDUCTION. In like manner, in order to perceive the force of the Copernican induction, the student must have his mind so disciplined by geometrical studies, or otherwise, that he sees clearly how absolute motion and relative motion would alike produce apparent motion. He must have learnt to cast away all prejudices arising from the seeming fixity of the earth; and then he will see that there is nothing which stands in the way of the induction, while there is much which is on its side. And in the same manner the Newtonian induction of the law of the sun's force from the elliptical form of the orbit, will be evidently satisfactory to him only who has such an insight into Mechanics as to see that a curvilinear path must arise from a constantly deflecting force; and who is able to follow the steps of geometrical reasoning by which, from the properties of the ellipse, Newton proves this deflection to be in the proportion in which he asserts the force to be. And thus in all cases the inductive truth must indeed be verified by comparing it with the particular facts; but then this comparison is possible for him only whose mind is properly disciplined and prepared in the use of those conceptions, which, in addition to the facts, the act of induction requires. Hence our Inductive Formula might be something like the following: 'These particulars, and all known particulars of the same kind, are exactly expressed by adopting the Conceptions and Statement of the following Proposition.' It is of course requisite that the Conceptions should be perfectly clear, and should precisely embrace the facts, according to the explanation we have already given of those conditions. PROP.--Gravity is a Uniform Force. Again, PROP.--When any Force acts upon a body in motion, the motion which the Force would produce in the body at rest is compounded with the previous motion of the body. And in like manner in other cases. Add to tbrJar First Page Next Page |
Terms of Use Stock Market News! © gutenberg.org.in2024 All Rights reserved.