Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: Monarchs of minstrelsy from Daddy Rice to date by Rice Edw Le Roy Edward Le Roy

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 3823 lines and 159055 words, and 77 pages

Now if we proceed to take to pieces the idea of architectural design, and consider wherein the problem of it consists, we shall find that it falls into a fourfold shape. It consists first in arranging the plan; secondly, in carrying up the boundary lines of this plan vertically in the shape of walls; thirdly, in the method of covering in the space which we have thus defined and inclosed; and, fourthly, in the details of ornamentation which give to it the last and concluding grace and finish. All building, when it gets beyond the mere wall with which we began, is really a method of covering in a space, or, if we may put it so, a collection of spaces, marked out and arranged for certain purposes. The first thing that the architect has to do is to arrange these spaces on the ground so that they may conveniently meet the necessary requirements of the building. Convenience and practical usefulness come first; but in any building which is worth the name of architecture something more than mere convenience has to be kept in mind, even in the arrangement of the plan upon the site. It is to be a combination of convenience with effectiveness of arrangement. We shall probably find that some one compartment of the plan is of paramount importance. We have to arrange the interior so that this most important compartment shall be the climax of the plan.

An able architect, who had given much thought to a plan of a large building of this kind, said to me, in showing me his plan, with a justifiable gratification in it, "It has cost me endless trouble, but it is a satisfaction to feel that you have got a plan with backbone in it." That is a very good expression of what is required in planning a complicated building, but few outsiders have any notion of the amount of thought and contrivance which goes to the production of a plan "with backbone;" a plan in which all the subordinate and merely practical departments shall be in the most convenient position in regard to each other, and yet shall all appear as if symmetrically and naturally subordinate to the central and leading feature; and if the public had a little more idea what is the difficulty of producing such a plan, they would perhaps do a little more justice to the labors of the man who contrives the plan, which they think such an easy business; and no doubt it may appear an easy business, because the very characteristic of a really good plan is that it should appear as if it were quite a natural and almost inevitable arrangement.

Just as it is said in regard to literature that easy writing is hard reading, so, in regard to planning, it is the complicated and rabbit warren plans that are the easiest to make, because it is just doing what you please; it is the apparently perfectly simple and natural plan which springs from thought and contrivance. Then there is the next step of raising the walls on the plan, and giving them architectural expression. This must not be thought of as an entirely separate problem, for no truly architectural intellect will ever arrange a plan without seeing generally, in his mind's eye, the superstructure which he intends to rear upon it; but the detailed treatment of this forms a separate branch of the design. Then comes the third and very important problem--the covering in of the space. Next to the plan, this is the most important. All building is the covering over of a space, and the method of covering it over must be foreseen and provided for from the outset. It largely influences the arrangement of the plan. If there were no roofing, you could arrange the walls and carry them up pretty much as you chose, but the roofing of a large space is another matter. It requires extra strength at certain points, where the weight of the roof is concentrated, and it has to be determined whether you will employ a method of roofing which exercises only a vertical pressure on the walls, like the lid of a box, or one which, like an arch, or a vault, or a dome, is abutting against the walls, and requires counterforts to resist the outward thrust of the roof. We shall come upon this subject of the influence of the roof on the design of the substructure more in detail later on. Then, if the plan is convenient and effective, the walls carried up with the architectural expression arising from the placing and grouping of the openings, and the proper emphasizing of the base and the cornice, and the horizontal stages of the structure, and the roof firmly and scientifically seated on the walls; after all these main portions of the structure are designed logically and in accordance with one another and with the leading idea of the building, then the finishing touches of expression and interest are given by well designed and effective ornamental detail. Here the designer may indulge his fancy as he pleases, as far as the nature of the design is concerned, but not, if you please, as far as its position and distribution are concerned. There the logic of architecture still pursues us.

We may not place ornament anywhere at haphazard on a building simply because it looks pretty. At least, to do so is to throw away great part of its value. For everything in architectural design is relative; it is to be considered in relation to the expression and design of the whole, and ornament is to be placed where it will emphasize certain points or certain features of the building. It must form a part of the grouping of the whole, and be all referable to a central and predominating idea. A building so planned, built, and decorated becomes, in fact, what all architecture--what every artistic design in fact should be--an organized whole, of which every part has its relation to the rest, and from which no feature can be removed without impairing the unity and consistency of the design. You may have a very good, even an expressive, building with no ornament at all if you like, but you may not have misplaced ornament. That is only an excrescence on the design, not an organic portion of it.

I have thought that it would be of use to those who are unacquainted with architectural procedure in delineating architecture by geometrical drawings if I took the opportunity of illustrating very briefly the philosophy of elevations, plans, and sections, which many non-professional people certainly do not understand.

Returning for a moment to the subject of the relation between the plan and the exterior design, it should be noted that the plan of a building being practically the first consideration, and the basis of the whole design, the latter should be in accordance with the principle of disposition of the plan. For example, if we have an elevation showing two wings of similar design on either side of a center, designed so as to convey the idea of a grand gallery, with a suite of apartments on either side of similar importance--if the one side only of the plan contains such a suite, and the opposite side is in reality divided up into small and inferior rooms, filled in as well as may be behind the architectural design--the whole design is in that case only a blind or screen, giving a false exterior symmetry to a building which is not so planned. This is an extreme case ; but it illustrates in a broad sense a principle which must be carried out in all cases, if the architecture is to be a real expression of the facts of the building.

Vitruvius gives elaborate directions for the proportioning of the size of all the details in the various orders; and though we may doubt whether his system is really a correct representation of the Greek one, we can have no doubt that some such system was employed by them. Various theorists have endeavored to show that the system has prevailed of proportioning the principal heights and widths of buildings in accordance with geometrical figures, triangles of various angles especially; and very probably this system has from time to time been applied, in Gothic as well as in classical buildings. This idea is open to two criticisms, however. First, the facts and measurements which have been adduced in support of it, especially in regard to Gothic buildings, are commonly found on investigation to be only approximately true. The diagram of the section of the building has nearly always, according to my experience, to be "coaxed" a little in order to fit the theory; or it is found that though the geometrical figure suggested corresponds exactly with some points on the plan or section, these are really of no more importance than other points which might just as well have been taken. The theorist draws our attention to those points in the building which correspond with his geometry, and leaves on one side those which do not. Now it may certainly be assumed that any builders intending to lay out a building on the basis of a geometrical figure would have done so with precise exactitude, and that they would have selected the most obviously important points of the plan or section for the geometrical spacing. In illustration of this point, I have given a skeleton diagram of a Roman arch, supposed to be set out on a geometrical figure. The center of the circle is on the intersection of lines connecting the outer projection of the main cornice with the perpendiculars from those points on the ground line. This point at the intersection is also the center of the circle of the archway itself. But the upper part of the imaginary circle beyond cuts the middle of the attic cornice. If the arch were to be regarded as set out in reference to this circle, it should certainly have given the most important line--the top line, of the upper cornice, not an inferior and less important line; and that is pretty much the case with all these proportion theories ; they are right as to one or two points of the building, but break down when you attempt to apply them further. It is exceedingly probable that many of these apparent geometric coincidences really arise, quite naturally, from the employment of some fixed measure of division in setting out buildings. Thus, if an apartment of somewhere about 30 feet by 25 feet is to be set out, the builder employing a foot measure naturally sets out exactly 30 feet one way and 25 feet the other way. It is easier and simpler to do so than to take chance fractional measurements. Then comes your geometrical theorist, and observes that "the apartment is planned precisely in the proportion of six to five." So it is, but it is only the philosophy of the measuring-tape, after all. Secondly, it is a question whether the value of this geometrical basis is so great as has sometimes been argued, seeing that the results of it in most cases cannot be judged by the eye. If, for instance, the room we are in were nearly in the proportion of seven in length to five in width, I doubt whether any of us here could tell by looking at it whether it were truly so or not, or even, if it were a foot out one way or the other, in which direction the excess lay; and if this be the case, the advantage of such a geometrical basis must be rather imaginary than real.

Having spoken of plan as the basis of design, I should wish to conclude this lecture by suggesting also, what has never to my knowledge been prominently brought forward, that the plan itself, apart from any consideration of what we may build up upon it, is actually a form of artistic thought, of architectural poetry, so to speak. If we take three such plans as those shown in Figs. 26, 27, and 28, typical forms respectively of the Egyptian, Greek, and Gothic plans, we certainly can distinguish a special imaginative feeling or tendency in each of them. In the Egyptian, which I have called the type of "mystery," the plan continually diminishes as we proceed inward. In the third great compartment the columns are planted thick and close, so as to leave no possibility of seeing through the building except along a single avenue of columns at a time. The gloom and mystery of a deep forest are in it, and the plan finally ends, still lessening as it goes, in the small and presumably sacred compartment to which all this series of colonnaded halls leads up. In the Greek plan there is neither climax nor anti-climax, only the picturesque feature of an exterior colonnade encircling the building and surrounding a single oblong compartment. It is a rationalistic plan, aiming neither at mystery nor aspiration. In the plan of Rheims we have the plan of climax or aspiration; as in the Egyptian, we approach the sacred portion through a long avenue of piers; but instead of narrowing, the plan extends as we approach the shrine. I think it will be recognized, putting aside all considerations of the style of the superstructure on these plans, that each of them in itself represents a distinct artistic conception. So in the plan of the Pantheon , this entrance through a colonnaded porch into a vast circular compartment is in itself a great architectural idea, independently of the manner in which it is built up.

THE LOWE INCANDESCENT GAS BURNER.

This burner is in the form of a cylinder made of a composition in which magnesium predominates, and gives a light of 210 candle power with a consumption of three and one-half cubic feet of gas per hour.

The cylinder to be heated to incandescence is firmly held in place on a metal spindle, which is slowly revolved by means of an ingenious clock-work in the base of the fixture. The arrangement is such that by turning off the gas the clock-work is stopped, and by the turning on of the gas, it is again set in motion. The movement of the spindle is so slow that a casual observer would not notice it, there being only one revolution made in twenty-four hours. The object of this movement is to continually present new surface to be heated, as that which is exposed to the high temperature wears away, similarly to the carbons used in electric lighting, though much more slowly.

These burners can be made of 2,000 candle power, down to fifty candle power.

Pure oxygen can now be obtained from the atmosphere at a cost of about twenty-five cents per 1,000 cubic feet, and the small amount required to supplement the fuel water gas in producing this light can be supplied under proper pressure from a very small pipe, which can be laid in the same trench with the fuel gas pipe, at much less cost than is required to carry an electric wire to produce an equal amount of light.

The oxygen pipe necessary to carry the gas under pressure need not exceed an inch and a half in diameter to supply 5,000 lamps of 2,000 candle power each. The only reason why this burner has not been further perfected and placed upon the market is because of the continual preoccupation of Prof. Lowe in other lines of invention, and the amount of attention required by his large business interests. Besides, the field for its usefulness has been limited, as cheap fuel gas has only just begun to be generally introduced. Now, however, that extensive preparations are being made for the rapid introduction of the Lowe fuel gas system into various cities, this burner will receive sufficient attention to shortly complete it for general use in large quantities. It is a more powerful and at the same time a softer light than is the electric incandescent or the arc light. The light-giving property of a burner of 1,000 candle power would not cost more than one cent for ten hours' lighting, and the cylinder would only require to be changed once a week; whereas the carbons of arc lights are changed daily. The cost of the gas required to maintain such a lamp ten hours would be six cents, allowing the same profit on the gas as when it is sold for other heating purposes. The lamps complete will cost much less than the present electric lamps, and after allowing a large profit to companies supplying them, will not cost consumers more than one-fourth as much as arc lamps, and will give a much clearer and steadier light.

Since Prof. Lowe perfected his first incandescent burner great progress has been made in this line of invention, and it is no wonder that the attention of the whole gas fraternity of the country has been drawn to the subject of cheap fuel water gas, which is so admirably adapted to all purposes of heat, light, and power.

PROGRESS OF THE SORGHUM SUGAR INDUSTRY.

We are indebted to Prof. E.B. Cowgill, of Kansas, for a copy of his recent report to the Kansas State Board of Agriculture concerning the operations of the Parkinson Sugar Works, at Fort Scott, Kansas. The report contains an interesting historical sketch of the various efforts heretofore made to produce sugar from sorghum, none of which proved remunerative until 1887, when the persevering efforts of a few energetic individuals, encouraged and assisted by a small pecuniary aid from government, were crowned with success, and gave birth, it may justly be said, to a new industry which seems destined shortly to assume gigantic proportions and increase the wealth of the country.

We make the following abstracts from the report:

The sorghum plant was introduced into the United States in 1853-54, by the Patent Office, which then embraced all there was of the United States Department of Agriculture. Its juice was known to be sweetish, and chemists were not long in discovering that it contained a considerable percentage of some substance giving the reactions of cane sugar. The opinion that the reactions were due to cane sugar received repeated confirmations in the formation of true cane sugar crystals in sirups made from sorghum. Yet the small amounts that were crystallized, compared with the amounts present in the juices as shown by the analyses, led many to believe that the reactions were largely due to some other substance than cane sugar.

During the years 1878 to 1882, inclusive, while Dr. Peter Collier was chief chemist of the Department of Agriculture, much attention was given to the study of sorghum juices from canes cultivated in the gardens of the department at Washington. Dr. Collier became an enthusiastic believer in the future greatness of sorghum as a sugar producing plant, and the extensive series of analyses published by him attracted much attention.

As a result large sugar factories were erected and provided with costly appliances. Hon. John Bennyworth erected one of these at Larned, in Kansas. S.A. Liebold & Co. subsequently erected one at Great Bend.

Sterling and Hutchinson followed with factories which made considerable amounts of merchantable sugar at no profit.

The factory at Sterling was erected by R.M. Sandy & Co., of New Orleans, and while the sirup produced paid the expenses of the factory, not a crystal of sugar was made. The factory then, in 1883, changed hands, and passed under the superintendency of Prof. M.A. Scovell, then of Champaign, Illinois, who, with Prof. Webber, had worked out, in the laboratories of the Illinois Industrial University, a practical method for obtaining sugar from sorghum in quantities which at prices then prevalent would pay a profit on the business. But prices declined, and after making sugar for two years in succession, the Sterling factory succumbed.

The Hutchinson factory at first made no sugar, but subsequently passed under the management of Prof. M. Swenson, who had successfully made sugar in the laboratory of the University of Wisconsin. Large amounts of sugar were made at a loss, and the Hutchinson factory closed its doors. In 1884, Hon. W.L. Parkinson fitted up a complete sugar factory at Ottawa, and for two years made sugar at a loss. Mr. Parkinson was assisted during the first year by Dr. Wilcox, and during the second year by Prof. Swenson.

Much valuable information was developed by the experience in those several factories, but the most important of all was the fact that, with the best crushers, the average extraction did not exceed half of the sugar contained in the cane. It was known to scientists and well informed sugar makers in this country that the process of diffusion was theoretically efficient for the extraction of sugar from plant cells, and that it had been successfully applied by the beet sugar makers of Europe for this purpose.

In 1883, Prof. H.W. Wiley, chief chemist of the Department of Agriculture, made an exhaustive series of practical experiments in the laboratories of the department on the extraction of the sugars from sorghum by the diffusion process, by which the extraction of at least 85 per cent. of the total sugars present was secured.

The Kansas delegation in Congress became interested. Senator Plumb made a thorough study of the entire subject, and, with the foresight of statesmanship, gave his energies to the work of securing an appropriation of ,000 for the development of the sugar industry, which was granted in 1884, and fifty thousand dollars more was added in 1885 to the agricultural appropriation bill. This was expended at Ottawa, Kansas, and in Louisiana.

In that year Judge Parkinson, at Fort Scott, organized the Parkinson Sugar Company. Taking up the work when all others had failed, this company has taken a full share of the responsibilities and losses, until it has at last seen the Northern sugar industry made a financial success.

The report of 1895 showed such favorable results that in 1886 the House made an appropriation of ,000, to be used in Louisiana, New Jersey, and Kansas. A new battery and complete carbonatation apparatus were erected at Fort Scott. About ,000 of the appropriation was expended here in experiments in diffusion and carbonatation.

Last year the Fort Scott management made careful selection of essential parts of the processes already used, omitted non-essential and cumbrous processes, availed themselves of all the experience of the past in this country, and secured a fresh infusion of experience from the beet sugar factories of Germany, and attained the success which finally places sorghum sugar making among the profitable industries of the country.

The success has been due, first, to the almost complete extraction of the sugars from the cane by the diffusion process; second, the prompt and proper treatment of the juice in defecating and evaporating; third, the efficient manner in which the sugar was boiled to grain in the strike pan.

There was something over 500 acres planted. Some of it failed to come at all, some "fell upon the rocky places, where they had not much earth, and when the sun was risen they were scorched;" so that, as nearly as we can estimate, about 450 acres of cane were actually harvested and delivered at the works. This would make the average yield of cane 9 1/2 tons per acre, or per acre in dollars and cents.

TOTAL PRODUCT OF THE SEASON, 1887.

TOTAL COST.

OUTLINE OF THE PROCESSES OF SORGHUM SUGAR MAKING.

As now developed, the processes of making sugar from sorghum are as follows:

The process of the formation of sugar in the cane is not fully determined, but analyses of canes made at different stages of growth show that the sap of growing cane contains a soluble substance having a composition and giving reactions similar to starch. As maturity approaches, grape sugar is also found in the juice. A further advance toward maturity discloses cane sugar with the other substances, and at full maturity perfect canes contain much cane sugar and little grape sugar and starchy matter.

In sweet fruits the change from grape sugar to cane sugar does not take place, or takes place but sparingly. The grape sugar is very sweet, however.

Cane sugar, called also sucrose or crystallizable sugar, when in dilute solution is changed very readily into grape sugar or glucose, a substance which is much more difficult than cane sugar to crystallize. This change, called inversion, takes place in over-ripe canes. It sets in very soon after cutting in any cane during warm weather; it occurs in cane which has been injured by blowing down, or by insects, or by frost, and it probably occurs in cane which takes a second growth after nearly or quite reaching maturity.

To insure a successful outcome from the operations of the factory, the cane must be so planted, cultivated and matured as to make the sugar in its juice. It must be delivered to the factory very soon after cutting, and it must be taken care of before the season of heavy frosts.

THE WORK AT THE FACTORY.

WHAT IS DIFFUSION?

The condition in which the sugars and other soluble substances exist in the cane is that of solution in water. The sweetish liquid is contained, like the juices of plants generally, in cells. The walls of these cells are porous. It has long been known that if a solution of sugar in water be placed in a porous or membraneous sack, and the sack placed on water, an action called osmosis, whereby the water from the outside and the sugar solution from the inside of the sack each pass through, until the liquids on the two sides of the membrane are equally sweet. Other substances soluble in water behave similarly, but sugar and other readily crystallizable substances pass through much more readily than uncrystallizable or difficultly crystallizable. To apply this properly to the extraction of sugar, the cane is first cut into fine chips, as already described, and put into the diffusion cells, where water is applied and the sugar is displaced.

THE DIFFUSION BATTERY,

as used at the Parkinson factory, consists of twelve iron tanks. They are arranged in a line, as shown in diagram, Fig. 1. Each has a capacity of seventy-five cubic feet, and by a little packing holds a ton of cane chips. The cells are supported by brackets near the middle, which rest on iron joists. Each cell is provided with a heater, through which the liquid is passed in the operation of the battery. The cells are so connected by pipes and valves that the liquid can be passed into the cells, and from cell to cell, at the pleasure of the operator. The bottom of each cell consists of a door, which closes on an annular rubber hose placed in a groove, and filled with water, under a pressure greater than that ever given to the liquids in the cell. This makes a water tight joint whenever the trap door bottom is drawn up firmly against it. The upper part is of cast iron and is jug shaped, and is covered with a lid which is held with a screw on rubber packing. In the jug neck and near the bottom the sides are double, the inner plates being perforated with small holes to let water in and out. The bottoms are double, the inner plates being perforated like the neighboring sides, and for the same purpose. The cells, of whose appearance a fair idea may be had from diagram, Fig. 2, are connected with a water pipe, a juice pipe, a compressed air pipe, and the heaters, by suitable valves. The heaters are connected with a steam pipe. This, and the compressed air pipe, are not shown in the diagram. The water pipe is fed from an elevated tank, which gives a pressure of twelve pounds per square inch The valve connections enable the operator to pass water into the cells at either the top or the bottom; to pass the liquid from any cell to the next, or to the juice pipe through the heater; to separate any cell from any or all others, and to turn in compressed air.

Now let the reader refer to Fig. 2.

The cutters are started, and cell 1 is filled with chips. This done, the chips from the cutters are turned into cell 2; cell 1 is closed, and cut off from the others, and water is turned into it by opening valve, c, of cell 1 until it is filled with water among the chips. When 2 is filled with chips, its valve, a, is raised to allow the liquid to pass down into the juice pipe. Valve a of 3 is also raised. Now the juice pipe fills, and when it is full the liquid flows through valve, a, of 3, and into the heater between 2 and 3, and into the bottom of 2, until 2 is full of water among the chips. . Valve a of 2 is now screwed down; c is down and b is opened. It will be readily seen by attention to the diagram that this changes the course of the flow so that it will no longer enter at the bottom, but at the top of 2, as shown by the arrows at cell 2.

It is to be observed that the water is continually pressing in at the top of 1, and driving the liquid forward whenever a valve is opened to admit it to another cell, heater, or pipe. When cell 3 is full of chips, its valves are manipulated just as were those of 2. So as each succeeding cell is filled, the manipulation of valves is repeated until cell 6 is filled with liquid. After passing through six cells of fresh chips, this liquid is very sweet, and is drawn off into the measuring tank shown at p in diagram, Fig. 1, and is thence conveyed for subsequent treatment in the factory. To draw this juice from 6, valve a of 7 is raised to connect the heater between 6 and 7 with the juice pipe. A gate valve in the juice pipe is opened into the measuring tank, and the pressure of water into the top of 1 drives the liquid forward through the bottom of 1, through the heater, into the top of 2, out from the bottom of 2, through the heater into the top of 3, out from the bottom of 3, through the heater into the top of 4, out from the bottom of 4, through the heater, into the top of 5, out from the bottom of 5, through the heater, into the top of 6, and now out from the bottom of 6, through the heater, into the juice pipe, and from the juice pipe into the measuring tank. It will be understood that the liquid which is drawn from 6 is chiefly that which was passed into 1 when it was filled with chips. There is doubtless a little mixing as the pressure drives the liquid forward. But the lighter liquid is always pressed in at the top of the cells, so that the mixing is the least possible. The amount of liquid, now called juice, which is drawn from 6 is 1,110 liters, or 291 gallons. When this quantity has been drawn into the measuring tank, the gate valve is closed, and the valves connecting with 7 are manipulated as were those of 6, a measure of juice being drawn in the same way. All this time the water has been passed into the top of 1, and this is continued until the juice has been drawn from 9. Valve c to cell 1 is now closed, and compressed air is turned into the top of 1 to drive the liquid forward into 10. After the water has thus been nearly all expelled from 1, valve a of cell 2 is lowered so as to shut off communication with the juice pipe, and b, of cell 2 is closed. a and b of cell 1 have, it will be observed, been closed or down from the beginning. Cell 1 is now isolated from all others. Its chips have been exhausted of sugar, and are ready to be thrown out. The bottom of 1 is opened, and the chips fall out into the car, o , and are conveyed away. Immediately on closing valves a and b of cell 2, c is opened, and the water presses into the top of 2, as before into the top of 1, and the circulation is precisely similar to that already described, 2 having taken the place of 1, 3 of 2, and so on.

When 2 is emptied, 3 takes the first place in the series and so on. When 12 has been filled, it takes the l3th place. The process is continuous, and the best and most economical results are obtained if there is no intermission.

One cell should be filled and another emptied every eight minutes, so that in twenty-four hours the number of cells diffused should be one hundred and eighty.

WHAT HAS TAKEN PLACE IN THE DIFFUSION CELLS.

Add to tbrJar First Page Next Page Prev Page

Back to top Use Dark Theme