Read Ebook: A bibliography of the writings of D. H. Lawrence by McDonald Edward D Lawrence D H David Herbert Contributor
Font size: Background color: Text color: Add to tbrJar First Page Next Page Prev PageEbook has 162 lines and 30129 words, and 4 pagesEvaporation is a slow process occurring at all times; it is hastened during the summer, because of the large amount of heat present in the atmosphere. Many large cities make use of the cooling effect of evaporation to lower the temperature of the air in summer; streets are sprinkled not only to lay the dust, but in order that the surrounding air may be cooled by the evaporation of the water. Some thrifty housewives economize by utilizing the cooling effects of evaporation. Butter, cheese, and other foods sensitive to heat are placed in porous vessels wrapped in wet cloths. Rapid evaporation of the water from the wet cloths keeps the contents of the jars cool, and that without expense other than the muscular energy needed for wetting the cloths frequently. If ice water is poured into a glass, a mist will form on the outside of the glass. This is because the water vapor in the air becomes chilled by contact with the glass and condenses. Often leaves and grass and sidewalks are so cold that the water vapor in the atmosphere condenses on them, and we say a heavy dew has formed. If the temperature of the air falls to the freezing point while the dew is forming, the vapor is frozen and frost is seen instead of dew. Proper ventilation would eliminate much of the physical danger of social events; fresh, dry air should be constantly admitted to crowded rooms in order to replace the air saturated by the breath and perspiration of the occupants. The likelihood of rain or frost is often determined by temperature and humidity. If the air is near saturation and the temperature is falling, it is safe to predict bad weather, because the fall of temperature will probably cause rapid condensation, and hence rain. If, however, the air is not near the saturation point, a fall in temperature will not necessarily produce bad weather. The measurement of humidity is of far wider importance than the mere forecasting of local weather conditions. The close relation between humidity and health has led many institutions, such as hospitals, schools, and factories, to regulate the humidity of the atmosphere as carefully as they do the temperature. Too great humidity is enervating, and not conducive to either mental or physical exertion; on the other hand, too dry air is equally harmful. In summer the humidity conditions cannot be well regulated, but in winter, when houses are artificially heated, the humidity of a room can be increased by placing pans of water near the registers or on radiators. If, on a bitter cold day, a pail of snow is brought into a warm room and a thermometer is placed in the snow, the temperature rises gradually until 32? F. is reached, when it becomes stationary, and the snow begins to melt. If the pail is put on the fire, the temperature still remains 32?F., but the snow melts more rapidly. As soon as all the snow is completely melted, however, the temperature begins to rise and rises steadily until the water boils, when it again becomes stationary and remains so during the passage of water into vapor. We see that heat must be supplied to ice at 0? C. or 32? F. in order to change it into water, and further, that the temperature of the mixture does not rise so long as any ice is present, no matter how much heat is supplied. The amount of heat necessary to melt 1 gram of ice is easily calculated. Heat must be supplied to ice to melt it. On the other hand, water, in freezing, loses heat, and the amount of heat lost by freezing water is exactly equal to the amount of heat absorbed by melting ice. But while most substances have a definite melting point, some substances do not. If a glass rod is held in a Bunsen burner, it will gradually grow softer and softer, and finally a drop of molten glass will fall from the end of the rod into the fire. The glass did not suddenly become a liquid at a definite temperature; instead it softened gradually, and then melted. While glass is in the soft, yielding, pliable state, it is molded into dishes, bottles, and other useful objects, such as lamp shades, globes, etc. . If glass melted at a definite temperature, it could not be molded in this way. Iron acts in a similar manner, and because of this property the blacksmith can shape his horseshoes, and the workman can make his engines and other articles of daily service to man. If water contracted in freezing, ice would be heavier than water and would sink in ponds and lakes as fast as it formed, and our streams and ponds would become masses of solid ice, killing all animal and plant life. But the ice is lighter than water and floats on top, and animals in the water beneath are as free to live and swim as they were in the warm sunny days of summer. The most severe winter cannot freeze a deep lake solid, and in the coldest weather a hole made in the ice will show water beneath the surface. Our ice boats cut and break the ice of the river, and through the water beneath our boats daily ply their way to and fro, independent of winter and its blighting blasts. While most of us are familiar with the bursting of water pipes on a cold night, few of us realize the influence which freezing water exerts on the character of the land around us. Water sinks into the ground and, on the approach of winter, freezes, expanding about one tenth of its volume; the expanding ice pushes the earth aside, the force in some cases being sufficient to dislodge even huge rocks. In the early days in New England it was said by the farmers that "rocks grew," because fields cleared of stones in the fall became rock covered with the approach of spring; the rocks and stones hidden underground and unseen in the fall were forced to the surface by the winter's expansion. We have all seen fence posts and bricks pushed out of place because of the heaving of the soil beneath them. Often householders must relay their pavements and walks because of the damage done by freezing water. The most conspicuous effect of the expansive power of freezing water is seen in rocky or mountainous regions . Water easily finds entrance into the cracks and crevices of the rocks, where it lodges until frozen; then it expands and acts like a wedge, widening cracks, chiseling off edges, and even breaking rocks asunder. In regions where frequent frosts occur, the destructive action of water works constant changes in the appearance of the land; small cracks and crevices are enlarged, massive rocks are pried up out of position, huge slabs are split off, and particles large and small are forced from the parent rock. The greater part of the debris and rubbish brought down from the mountain slopes by the spring rains owes its origin to the fact that water expands when it freezes. Let some snow or chopped ice be placed in a vessel and mixed with one third its weight of coarse salt; if then a small tube of cold water is placed in this mixture, the water in the test tube will soon freeze solid. As soon as the snow and salt are mixed they melt. The heat necessary for this comes in part from the air and in part from the water in the test tube, and the water in the tube becomes in consequence cold enough to freeze. But the salt mixture does not freeze because its freezing point is far below that of pure water. The use of salt and ice in ice-cream freezers is a practical application of this principle. The heat necessary for melting the mixture of salt and ice is taken from the cream which thus becomes cold enough to freeze. Everywhere in a large city or in a small village, smoke is seen, indicating the presence of fire; hence there must exist a large supply of oxygen to keep all the fires alive. The supply of oxygen needed for the fires of the world comes largely from the atmosphere. For these reasons the introduction of the so-called safety match was an important event. When common phosphorus, in the dangerous and easily ignited form, is heated in a closed vessel to about 250? C., it gradually changes to a harmless red mass. The red phosphorus is not only harmless, but it is difficult to ignite, and, in order to be ignited by friction, must be rubbed on a surface rich in oxygen. The head of a safety match is coated with a mixture of glue and oxygen-containing compounds; the surface on which the match is to be rubbed is coated with a mixture of red phosphorus and glue, to which finely powdered glass is sometimes added in order to increase the friction. Unless the head of the match is rubbed on the prepared phosphorus coating, ignition does not occur, and accidental fires are avoided. Various kinds of safety matches have been manufactured in the last few years, but they are somewhat more expensive than the ordinary form, and hence manufacturers are reluctant to substitute them for the cheaper matches. Some foreign countries, such as Switzerland, prohibit the sale of the dangerous type, and it is hoped that the United States will soon follow the lead of these countries in demanding the sale of safety matches only. The tendency of iron to rust lessens its efficiency and value, and many devices have been introduced to prevent rusting. A coating of paint or varnish is sometimes applied to iron in order to prevent contact with air. The galvanizing of iron is another attempt to secure the same result; in this process iron is dipped into molten zinc, thereby acquiring a coating of zinc, and forming what is known as galvanized iron. Zinc does not combine with oxygen under ordinary circumstances, and hence galvanized iron is immune from rust. Decay is a process of oxidation; the tree which rots slowly away is undergoing oxidation, and the result of the slow burning is the decomposed matter which we see and the invisible gases which pass into the atmosphere. The log which blazes on our hearth gives out sufficient heat to warm us; the log which decays in the forest gives out an equivalent amount of heat, but the heat is evolved so slowly that we are not conscious of it. Burning accompanied by a blaze and intense heat is a rapid process; burning unaccompanied by fire and appreciable heat is a slow, gradual process, requiring days, weeks, and even long years for its completion. Another form of oxidation occurs daily in the human body. In Section 35 we saw that the human body is an engine whose fuel is food; the burning of that food in the body furnishes the heat necessary for bodily warmth and the energy required for thought and action. Oxygen is essential to burning, and the food fires within the body are kept alive by the oxygen taken into the body at every breath by the lungs. We see now one reason for an abundance of fresh air in daily life. In the immediate neighborhood of three Philadelphia high schools, having an approximate enrollment of over 8000 pupils, is a huge manufacturing plant which day and night pours forth grimy smoke and soot into the atmosphere which must supply oxygen to this vast group of young lives. If the vital importance of nose breathing is impressed upon these young people, the harmful effect of the foul air may be greatly lessened, the smoke particles and germs being held back by the nose filters and never reaching the lungs. If, however, this principle of hygiene is not brought to their attention, the dangerous habit of breathing through the open, or at least partially open, mouth will continue, and objectionable matter will pass through the mouth and find a lodging place in the lungs. There is another very important reason why nose breathing is preferable to mouth breathing. The temperature of the human body is approximately 98? F., and the air which enters the lungs should not be far below this temperature. If air reaches the lungs through the nose, its journey is relatively long and slow, and there is opportunity for it to be warmed before it reaches the lungs. If, on the other hand, air passes to the lungs by way of the mouth, the warming process is brief and insufficient, and the lungs suffer in consequence. Naturally, the gravest danger is in winter. Adenoids not only obstruct breathing and weaken the whole system through lack of adequate air, but they also press upon the blood vessels and nerves of the head and interfere with normal brain development. Moreover, they interfere in many cases with the hearing, and in general hinder activity and growth. The removal of adenoids is simple, and carries with it only temporary pain and no danger. Some physicians claim that the growths disappear in later years, but even if that is true, the physical and mental development of earlier years is lost, and the person is backward in the struggle for life and achievement. The coal and the large sticks cannot be kindled with a match, but the paper and shavings can, and these in burning will heat the large sticks until they take fire and in turn kindle the coal. Burns are dangerous because they destroy skin and thus open up an entrance into the body for disease germs, and in addition because they lay bare nerve tissue which thereby becomes irritated and causes a shock to the entire system. In mild burns, where the skin is not broken but is merely reddened, an application of moist baking soda brings immediate relief. If this substance is not available, flour paste, lard, sweet oil, or vaseline may be used. In more severe burns, where blisters are formed, the blisters should be punctured with a sharp, sterilized needle and allowed to discharge their watery contents before the above remedies are applied. In burns severe enough to destroy the skin, disinfection of the open wound with weak carbolic acid or hydrogen peroxide is very necessary. After this has been done, a soft cloth soaked in a solution of linseed oil and limewater should be applied and the whole bandaged. In such a case, it is important not to use cotton batting, since this sticks to the rough surface and causes pain when removed. Wood and coal, and in fact all animal and vegetable matter, contain carbon, and when these substances burn or decay, the carbon in them unites with oxygen and forms carbon dioxide. The food which we eat is either animal or vegetable, and it is made ready for bodily use by a slow process of burning within the body; carbon dioxide accompanies this bodily burning of food just as it accompanies the fires with which we are more familiar. The carbon dioxide thus produced within the body escapes into the atmosphere with the breath. We see that the source of carbon dioxide is practically inexhaustible, coming as it does from every stove, furnace, and candle, and further with every breath of a living organism. Since every man, woman, and child constantly breathes forth carbon dioxide, the danger in overcrowded rooms is great, and proper ventilation is of vital importance. In houses which have not a ventilating system, the air should be kept fresh by intelligent action in the opening of doors and windows; and since relatively few houses are equipped with a satisfactory system, the following suggestions relative to intelligent ventilation are offered. Carbon plays an important and varied role in our life, and, in some one of its many forms, enters into the composition of most of the substances which are of service and value to man. The food we eat, the clothes we wear, the wood and coal we burn, the marble we employ in building, the indispensable soap, and the ornamental diamond, all contain carbon in some form. The foul, bad-smelling gases which arise from sewers can be prevented from escaping and passing to streets and buildings by placing charcoal filters at the sewer exits. Charcoal is porous and absorbs foul gases, and thus keeps the region surrounding sewers sweet and clean and free of odor. Good housekeepers drop small bits of charcoal into vases of flowers to prevent discoloration of the water and the odor of decaying stems. If impure water filters through charcoal, it emerges pure, having left its impurities in the pores of the charcoal. Practically all household filters of drinking water are made of charcoal. But such a device may be a source of disease instead of a prevention of disease, unless the filter is regularly cleaned or renewed. This is because the pores soon become clogged with the impurities, and unless they are cleaned, the water which flows through the filter passes through a bed of impurities and becomes contaminated rather than purified. Frequent cleansing or renewal of the filter removes this difficulty. Commercially, charcoal is used on a large scale in the refining of sugars, sirups, and oils. Sugar, whether it comes from the maple tree, or the sugar cane, or the beet, is dark colored. It is whitened by passage through filters of finely pulverized charcoal. Cider and vinegar are likewise cleared by passage through charcoal. The value of carbon, in the form of charcoal, as a purifier is very great, whether we consider it a deodorizer, as in the case of the sewage, or a decolorizer, as in the case of the refineries, or whether we consider the service it has rendered man in the elimination of danger from drinking water. The wood which smolders on the hearth and in the stove is charcoal in the making. Formerly wood was piled in heaps, covered with sod or sand to prevent access of oxygen, and then was set fire to; the smoldering wood, cut off from an adequate supply of air, was slowly transformed into charcoal. Scattered over the country one still finds isolated charcoal kilns, crude earthen receptacles, in which wood thus deprived of air was allowed to smolder and form charcoal. To-day charcoal is made commercially by piling wood on steel cars and then pushing the cars into strong walled chambers. The chambers are closed to prevent access of air, and heated to a high temperature. The intense heat transforms the wood into charcoal in a few hours. A student can make in the laboratory sufficient charcoal for art lessons by heating in an earthen vessel wood buried in sand. The process will be slow, however, because the heat furnished by a Bunsen burner is not great, and the wood is transformed slowly. A form of charcoal known as animal charcoal, or bone black, is obtained from the charred remains of animals rather than plants, and may be prepared by burning bones and animal refuse as in the case of the wood. Destructive Distillation. When wood is burned without sufficient air, it is changed into soft brittle charcoal, which is very different from wood. It weighs only one fourth as much as the original wood. It is evident that much matter must leave the wood during the process of charcoal making. We can prove this by putting some dry shavings in a strong test tube fitted with a delivery tube. When the wood is heated a gas passes off which we may collect and burn. Other substances also come off in gaseous form, but they condense in the water. Among these are wood alcohol, wood tar, and acetic acid. In the older method of charcoal making all these products were lost. Can you give any uses of these substances? A similar law holds for energy as well. We can transform electric energy into the motion of trolley cars, or we can make use of the energy of streams to turn the wheels of our mills, but in all these cases we are transforming, not creating, energy. When a ball is fired from a rifle, most of the energy of the gunpowder is utilized in motion, but some is dissipated in producing a flash and a report, and in heat. The energy of the gunpowder has been scattered, but the sum of the various forms of energy is equal to the energy originally stored away in the powder. The better the gun is, the less will be the energy dissipated in smoke and heat and noise. FOOD It is of vital importance that the relative value of different foods as heat producers be known definitely; and just as the yard measures length and the pound measures weight the calorie is used to measure the amount of heat which a food is capable of furnishing to the body. Our bodies are human machines, and, like all other machines, require fuel for their maintenance. The fuel supplied to an engine is not all available for pulling the cars; a large portion of the fuel is lost in smoke, and another portion is wasted as ashes. So it is with the fuel that runs the body. The food we eat is not all available for nourishment, much of it being as useless to us as are smoke and ashes to an engine. The best foods are those which do the most for us with the least possible waste. Then, too, there are more uses for food than the production of heat. Teeth and bones and nails need a constant supply of mineral matter, and mineral matter is frequently found in greatest abundance in foods of low fuel value, such as lettuce, watercress, etc., though practically all foods yield at least a small mineral constituent. When fuel values alone are considered, fruits have a low value, but because of the flavor they impart to other foods, and because of the healthful influence they exercise in digestion, they cannot be excluded from the diet. Care should be constantly exercised to provide substantial foods of high fuel value. But the nutritive foods should be wisely supplemented by such foods as fruits, whose real value is one of indirect rather then direct service. Although the foods which we eat are of widely different character, such as fruits, vegetables, cereals, oils, meats, eggs, milk, cheese, etc., they can be put into three great classes: the carbohydrates, the fats, and the proteids. Carbohydrates, whether of the starch group or the sugar group, are composed chiefly of three elements: carbon, hydrogen, and oxygen; they are therefore combustible, and are great energy producers. On the other hand, they are worthless for cell growth and repair, and if we limited our diet to carbohydrates, we should be like a man who had fuel but no engine capable of using it. For an average man four ounces of dry proteid matter daily will suffice to keep the body cells in normal condition. Add to tbrJar First Page Next Page Prev Page |
Terms of Use Stock Market News! © gutenberg.org.in2025 All Rights reserved.