Use Dark Theme
bell notificationshomepageloginedit profile

Munafa ebook

Munafa ebook

Read Ebook: Babbage's calculating engine by Babbage Charles

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 112 lines and 32778 words, and 3 pages

THE EDINBURGH REVIEW,

JULY, 1834.

THE CALCULATING ENGINE

CHARLES BABBAGE

Notwithstanding the interest with which this invention has been regarded in every part of the world, it has never yet been embodied in a written, much less in a published form. We trust, therefore, that some credit will be conceded to us for having been the first to make the public acquainted with the object, principle, and structure of a piece of machinery, which, though at present unknown , must, when completed, produce important effects, not only on the progress of science, but on that of civilisation.

The calculating machinery thus undertaken for the public gratuitously , has now attained a very advanced stage towards completion; and a portion of it has been put together, and performs various calculations;--affording a practical demonstration that the anticipations of those, under whose advice Government has acted, have been well founded.

With a view to remove and correct erroneous impressions, and at the same time to convert the vague sense of wonder at what seems incomprehensible, with which this project is contemplated by the public in general, into a more rational and edifying sentiment, it is our purpose in the purpose in the present article.

Viewing the infinite extent and variety of the tables which have been calculated and printed, from the earliest periods of human civilisation to the present time, we feel embarrassed with the difficulties of the task which we have imposed on ourselves;--that of attempting to convey to readers unaccustomed to such speculations, any thing approaching to an adequate idea of them. These tables are connected with the various sciences, with almost every department of the useful arts, with commerce in all its relations; but above all, with Astronomy and Navigation. So important have they been considered, that in many instances large sums have been appropriated by the most enlightened nations in the production of them; and yet so numerous and insurmountable have been the difficulties attending the attainment of this end, that after all, even navigators, putting aside every other department of art and science, have, until very recently, been scantily and imperfectly supplied with the tables indispensably necessary to determine their position at sea.

Tables of Multiplication to a still greater extent have been published in France. In 1785, was published an octavo volume of tables of the squares, cubes, square roots, and cube roots of all numbers from 1 to 10,000; and similar tables were again published in 1801. In 1817, multiplication tables were published in Paris by Voisin; and similar tables, in two quarto volumes, in 1824, by the French Board of Longitude, extending as far as a thousand times a thousand. A table of squares was published in 1810, in Hanover; in 1812, at Leipzig; in 1825, at Berlin; and in 1827, at Ghent. A table of cubes was published in 1827, at Eisenach; in the same year a similar table at Ghent; and one of the squares of all numbers as far as 10,000, was published in that year, in quarto, at Bonn. The Prussian Government has caused a multiplication table to be calculated and printed, extending as far as 1000 times 1000. Such are a few of the tables of this class which have been published in different countries.

This class of tables may be considered as purely arithmetical, since the results which they express involve no other relations than the arithmetical dependence of abstract numbers upon each other. When numbers, however, are taken in a concrete sense, and are applied to express peculiar modes of quantity,--such as angular, linear, superficial, and solid magnitudes,--a new set of numerical relations arise, and a large number of computations are required.

To express angular magnitude, and the various relations of linear magnitude with which it is connected, involves the consideration of a vast variety of Geometrical and Trigonometrical tables; such as tables of the natural sines, co-sines, tangents, secants, co-tangents, &c. &c.; tables of arcs and angles in terms of the radius; tables for the immediate solution of various cases of triangles, &c. Volumes without number of such tables have been from time to time computed and published. It is not sufficient, however, for the purposes of computation to tabulate these immediate trigonometrical functions. Their squares and higher powers, their square roots, and other roots, occur so frequently, that it has been found expedient to compute tables for them, as well as for the same functions of abstract numbers.

The measurement of linear, superficial, and solid magnitudes, in the various forms and modifications in which they are required in the arts, demands another extensive catalogue of numerical tables. The surveyor, the architect, the builder, the carpenter, the miner, the ganger, the naval architect, the engineer, civil and military, all require the aid of peculiar numerical tables, and such have been published in all countries.

The increased expedition and accuracy which was introduced into the art of computation by the invention of Logarithms, greatly enlarged the number of tables previously necessary. To apply the logarithmic method, it was not merely necessary to place in the hands of the computist extensive tables of the logarithms of the natural numbers, but likewise to supply him with tables in which he might find already calculated the logarithms of those arithmetical, trigonometrical, and geometrical functions of numbers, which he has most frequent occasion to use. It would be a circuitous process, when the logarithm of a sine or co-sine of an angle is required, to refer, first to the table of sines, or co-sines, and thence to the table of the logarithms of natural numbers. It was therefore found expedient to compute distinct tables of the logarithms of the sines, co-sines, tangents, &c., as well as of various other functions frequently required, such as sums, differences, &c.

Great as is the extent of the tables we have just enumerated, they bear a very insignificant proportion to those which remain to be mentioned. The above are, for the most part, general in their nature, not belonging particularly to any science or art. There is a much greater variety of tables, whose importance is no way inferior, which are, however, of a more special nature: Such are, for example, tables of interest, discount, and exchange, tables of annuities, and other tables necessary in life insurances; tables of rates of various kinds necessary in general commerce. But the science in which, above all others, the most extensive and accurate tables are indispensable, is Astronomy; with the improvement and perfection of which is inseparably connected that of the kindred art of Navigation. We scarcely dare hope to convey to the general reader any thing approaching to an adequate notion of the multiplicity and complexity of the tables necessary for the purposes of the astronomer and navigator. We feel, nevertheless, that the truly national importance which must attach to any perfect and easy means of producing those tables cannot be at all estimated, unless we state some of the previous calculations necessary in order to enable the mariner to determine, with the requisite certainty and precision, the place of his ship.

Tables necessary to determine the places of the planets are not less necessary than those for the sun, moon, and stars. Some notion of the number and complexity of these tables may be formed, when we state that the positions of the two principal planets, Jupiter and Saturn, require each not less than one hundred and sixteen tables. Yet it is not only necessary to predict the position of these bodies, but it is likewise expedient to tabulate the motions of the four satellites of Jupiter, to predict the exact times at which they enter his shadow, and at which their shadows cross his disc, as well as the times at which they are interposed between him and the Earth, and he between them and the Earth.

Among the extensive classes of tables here enumerated, there are several which are in their nature permanent and unalterable, and would never require to be recomputed, if they could once be computed with perfect accuracy on accurate data; but the data on which such computations are conducted, can only be regarded as approximations to truth, within limits the extent of which must necessarily vary with our knowledge of astronomical science. It has accordingly happened, that one set of tables after another has been superseded with each advance of astronomical science. Some striking examples of this may not be uninstructive. In 1765, the Board of Longitude paid to the celebrated Euler the sum of L.300, for furnishing general formulae for the computation of lunar tables. Professor Mayer was employed to calculate the tables upon these formulae, and the sum of L.3000 was voted for them by the British Parliament, to his widow, after his decease. These tables had been used for ten years, from 1766 to 1776, in computing the Nautical Almanac, when they were superseded by new and improved tables, composed by Mr Charles Mason, under the direction of Dr Maskelyne, from calculations made by order of the Board of Longitude, on the observations of Dr Bradley. A farther improvement was made by Mason in 1780; but a much more extensive improvement took place in the lunar calculations by the publication of the tables of the Moon, by M. B?rg, deduced from Laplace's theory, in 1806. Perfect, however, as B?rg's tables were considered, at the time of their publication, they were, within the short period of six years, superseded by a more accurate set of tables published by Burckhardt in 1812; and these also have since been followed by the tables of Damoiseau. Professor Schumacher has calculated by the latter tables his ephemeris of the Planetary Lunar Distances, and astronomers will hence be enabled to put to the strict test of observation the merits of the tables of Burckhardt and Damoiseau.

The solar tables have undergone, from time to time, similar changes. The solar tables of Mayer were used in the computation of the Nautical Almanac, from its commencement in 1767, to 1804 inclusive. Within the six years immediately succeeding 1804, not less than three successive sets of solar tables appeared, each improving on the other; the first by Baron de Zach, the second by Delambre, under the direction of the French Board of Longitude, and the third by Carlini. The last, however, differ only in arrangement from those of Delambre.

Similar observations will be applicable to the tables of the principal planets. Bouvard published, in 1803, tables of Jupiter and Saturn; but from the improved state of astronomy, he found it necessary to recompute these tables in 1821.

Although it is now about thirty years since the discovery of the four new planets, Ceres, Pallas, Juno, and Vesta, it was not till recently that tables of their motions were published. They have lately appeared in Encke's Ephemeris.

To be convinced of the necessity which has existed for accurate numerical tables, it will only be necessary to consider at what an immense expenditure of labour and of money even the imperfect ones which we possess have been produced.

To enable the reader to estimate the difficulties which attend the attainment even of a limited degree of accuracy, we shall now explain some of the expedients which have been from time to time resorted to for the attainment of numerical correctness in calculating and printing them.

Among the scientific enterprises which the ambition of the French nation aspired to during the Republic, was the construction of a magnificent system of numerical tables. Their most distinguished mathematicians were called upon to contribute to the attainment of this important object; and the superintendence of the undertaking was confided to the celebrated Prony, who co-operated with the government in the adoption of such means as might be expected to ensure the production of a system of logarithmic and trigonometric tables, constructed with such accuracy that they should form a monument of calculation the most vast and imposing that had ever been executed, or even conceived. To accomplish this gigantic task, the principle of the division of labour, found to be so powerful in manufactures, was resorted to with singular success. The persons employed in the work were divided into three sections: the first consisted of half a dozen of the most eminent analysts. Their duty was to investigate the most convenient mathematical formulae, which should enable the computers to proceed with the greatest expedition and accuracy by the method of Differences, of which we shall speak more fully hereafter. These formulae, when decided upon by this first section, were handed over to the second section, which consisted of eight or ten properly qualified mathematicians. It was the duty of this second section to convert into numbers certain general or algebraical expressions which occurred in the formulae, so as to prepare them for, the hands of the computers. Thus prepared, these formulae were handed over to the third section, who formed a body of nearly one hundred computers. The duty of this numerous section was to compute the numbers finally intended for the tables. Every possible precaution was of course taken to ensure the numerical accuracy of the results. Each number was calculated by two or more distinct and independent computers, and its truth and accuracy determined by the coincidence of the results thus obtained.

As an example of the precautions which have been considered necessary to guard against errors in the calculation of numerical tables, we shall further state those which were adopted by Mr Babbage, previously to the publication of his tables of logarithms. In order to render the terminal figure of tables in which one or more decimal places are omitted as accurate as it can be, it has been the practice to compute one or more of the succeeding figures; and if the first omitted figure be greater than 4, then the terminal figure is always increased by 1, since the value of the tabulated number is by such means brought nearer to the truth. The tables of Callet, which were among the most accurate published logarithms, and which extended to seven places of decimals, were first carefully compared with the tables of Vega, which extended to ten places, in order to discover whether Callet had made the above correction of the final figure in every case where it was necessary. This previous precaution being taken, and the corrections which appeared to be necessary being made in a copy of Callet's tables, the proofs of Mr Babbage's tables were submitted to the following test: They were first compared, number by number, with the corrected copy of Callet's logarithms; secondly, with Hutton's logarithms; and thirdly, with Vega's logarithms. The corrections thus suggested being marked in the proofs, corrected revises were received back. These revises were then again compared, number by number, first with Vega's logarithms; secondly, with the logarithms of Callet; and thirdly, as far as the first 20,000 numbers, with the corresponding ones in Briggs's logarithms. They were now returned to the printer, and were stereotyped; proofs were taken from the stereotyped plates, which were put through the following ordeal: They were first compared once more with the logarithms of Vega as far as 47,500; they were then compared with the whole of the logarithms of Gardner; and next with the whole of Taylor's logarithms; and as a last test, they were transferred to the hands of a different set of readers, and were once more compared with Taylor. That these precautions were by no means superfluous may be collected from the following circumstances mentioned by Mr Babbage: In the sheets read immediately previous to stereotyping, thirty-two errors were detected; after stereotyping, eight more were found, and corrected in the plates.

In order to make the calculations upon the numbers found in the Ephemeral Tables published in the Nautical Almanac, it is necessary that the mariner should be supplied with certain permanent tables. A volume of these, to the number of about thirty, was accordingly computed, and published at national expense, by order of the Board of Longitude, entitled 'Tables requisite to be used with the Nautical Ephemeris for finding the latitude and longitude at sea.' In the first edition of these requisite tables, there were detected, by one individual, above a thousand errors.

The tables published by the Board of Longitude for the correction of the observed distances of the moon from certain fixed stars, are followed by a table of acknowledged errata, extending to seven folio pages, and containing more than eleven hundred errors. Even this table of errata itself is not correct: a considerable number of errors have been detected in it, so that errata upon errata have become necessary.

One of the tests most frequently resorted to for the detection of errors in numerical tables, has been the comparison of tables of the same kind, published by different authors. It has been generally considered that those numbers in which they are found to agree must be correct; inasmuch as the chances are supposed to be very considerable against two or more independent computers falling into precisely the same errors. How far this coincidence may be safely assumed as a test of accuracy we shall presently see.

A few years ago, it was found desirable to compute some very accurate logarithmic tables for the use of the great national survey of Ireland, which was then, and still is in progress; and on that occasion a careful comparison of various logarithmic tables was made. Six remarkable errors were detected, which were found to be common to several apparently independent sets of tables. This singular coincidence led to an unusually extensive examination of the logarithmic tables published both in England and in other countries; by which it appeared that thirteen sets of tables, published in London between the years 1633 and 1822, all agreed in these six errors. Upon extending the enquiry to foreign tables, it appeared that two sets of tables published at Paris, one at Gouda, one at Avignon, one at Berlin, and one at Florence, were infected by exactly the same six errors. The only tables which were found free from them were those of Vega, and the more recent impressions of Callet. It happened that the Royal Society possessed a set of tables of logarithms printed in the Chinese character, and on Chinese paper, consisting of two volumes: these volumes contained no indication or acknowledgment of being copied from any other work. They were examined; and the result was the detection in them of the same six errors.

It is quite apparent that this remarkable coincidence of error must have arisen from the various tables being copied successively one from another. The earliest work in which they appeared was Vlacq's Logarithms, ; and from it, doubtless, those which immediately succeeded it in point of time were copied; from which the same errors were subsequently transcribed into all the other, including the Chinese logarithms.

It appears, therefore, that the coincidence of different tables, even when it is certain that they could not have been copied one from another, but must have been computed independently, is not a decisive test of their correctness, neither is it possible to ensure accuracy by the device of separate and independent computation.

Besides the errors incidental to the process of computation, there are further liabilities in the process of transcribing the final results of each calculation into the fair copy of the table designed for the printer. The next source of error lies with the compositor, in transferring this copy into type. But the liabilities to error do not stop even here; for it frequently happens, that after the press has been fully corrected, errors will be produced in the process of printing. A remarkable instance of this occurs in one of the six errors detected in so many different tables already mentioned. In one of these cases, the last five figures of two successive numbers of a logarithmic table were the following:--

At the time when the calculation and publication of Taylor's Logarithms were undertaken, it so happened that a similar work was in progress in France; and it was not until the calculation of the French work was completed, that its author was informed of the publication of the English work. This circumstance caused the French calculator to relinquish the publication of his tables. The manuscript subsequently passed into the library of Delambre, and, after his death, was purchased at the sale of his books, by Mr Babbage, in whose possession it now is. Some years ago it was thought advisable to compare these manuscript tables with Taylor's Logarithms, with a view to ascertain the errors in each, but especially in Taylor. The two works were peculiarly well suited for the attainment of this end; as the circumstances under which they were produced, rendered it quite certain that they were computed independently of each other. The comparison was conducted under the direction of the late Dr Young, and the result was the detection of the following nineteen errors in Taylor's Logarithms. To enable those who used Taylor's Logarithms to make the necessary corrections in them, the corrections of the detected errors appeared as follows in the Nautical Almanac for 1832.

An error being detected in this list of ERRATA, we find, in the Nautical Almanac for the year 1833, the following ERRATUM of the ERRATA of Taylor's Logarithms:--

Here, however, confusion is worse confounded; for a new error, not before existing, and of much greater magnitude, is introduced! It will be necessary, in the Nautical Almanac for 1836, to introduce the following:

There are two cases among the above errata, in which an error, committed in the calculation of one number, has evidently been the cause of other errors. In the third erratum, a wrong carriage was made, in computing the sine of 4? 23' 38". The next number of the table was vitiated by this error; for we find the next erratum to be in the sine of 4? 23' 39", in which the figure similarly placed is 1 in excess. A still more extensive effect of this kind appears in errata 11, 12, 13, 14, 15, 16. A carriage was neglected in computing the sine of 25? 5' 4", and this produced a corresponding error in the five following numbers of the table, which are those corrected in the five following errata.

This frequency of errors arising in the process of carrying, would afford a curious subject of metaphysical speculation respecting the operation of the faculty of memory. In the arithmetical process, the memory is employed in a twofold way;--in ascertaining each successive figure of the calculated result by the recollection of a table committed to memory at an early period of life; and by another act of memory, in which the number carried from column to column is retained. It is a curious fact, that this latter circumstance, occurring only the moment before, and being in its nature little complex, is so much more liable to be forgotten or mistaken than the results of rather complicated tables. It appears, that among the above errata, the errors 5, 7, 10, 11, 17, 19, have been produced by the computer forgetting a carriage; while the errors 1, 3, 6, 8, 9, 18, have been produced by his making a carriage improperly. Thus, so far as the above list of errata affords grounds for judging, it would seem, that the error by which improper carriages are made is as frequent as that by which necessary carriages are overlooked.

We trust that we have succeeded in proving, first, the great national and universal utility of numerical tables, by showing the vast number of them, which have been calculated and published; secondly, that more effectual means are necessary to obtain such tables suitable to the present state of the arts, sciences and commerce, by showing that the existing supply of tables, vast as it certainly is, is still scanty, and utterly inadequate to the demands of the community;--that it is rendered inefficient, not only in quantity, but in quality, by its want of numerical correctness; and that such numerical correctness is altogether unattainable until some more perfect method be discovered, not only of calculating the numerical results, but of tabulating these,--of reducing such tallies to type, and of printing that type so as to intercept the possibility of error during the press-work. Such are the ends which are proposed to be attained by the calculating machinery invented by Mr Babbage.

The benefits to be derived from this invention cannot be more strongly expressed than they have been by Mr Colebrooke, President of the Astronomical Society, on the occasion of presenting the gold medal voted by that body to Mr Babbage:--'In no department of science, or of the arts, does this discovery promise to be so eminently useful as in that of astronomy, and its kindred sciences, with the various arts dependent on them. In none are computations more operose than those which astronomy in particular requires;--in none are preparatory facilities more needful;--in none is error more detrimental. The practical astronomer is interrupted in his pursuit, and diverted from his task of observation by the irksome labours of computation, or his diligence in observing becomes ineffectual for want of yet greater industry of calculation. Let the aid which tables previously computed afford, be furnished to the utmost extent which mechanism has made attainable through Mr Babbage's invention, and the most irksome portion of the astronomer's task is alleviated, and a fresh impulse is given to astronomical research.'

The first step in the progress of this singular invention was the discovery of some common principle which pervaded numerical tables of every description; so that by the adoption of such a principle as the basis of the machinery, a corresponding degree of generality would be conferred upon its calculations. Among the properties of numerical functions, several of a general nature exist; and it was a matter of no ordinary difficulty, and requiring no common skill, to select one which might, in all respects, be preferable to the others. Whether or not that which was selected by Mr Babbage affords the greatest practical advantages, would be extremely difficult to decide--perhaps impossible, unless some other projector could be found possessed of sufficient genius, and sustained by sufficient energy of mind and character, to attempt the invention of calculating machinery on other principles. The principle selected by Mr Babbage as the basis of that part of the machinery which calculates, is the Method of Differences; and he has in fact literally thrown this mathematical principle into wheel-work. In order to form a notion of the nature of the machinery, it will be necessary, first to convey to the reader some idea of the mathematical principle just alluded to.

No. Table. 1 1 2 16 3 81 4 256 5 625 6 1296 7 2401 8 4096 9 6561 10 10,000 11 14,641 12 20,736 13 28,561

In like manner, subtracting each term of this series from the succeeding one, we obtain the following series of second differences:--

Proceeding with this series in the same way, we obtain the following series of third differences:--

Proceeding in the same way with these, we obtain the following for the series of fourth differences:--

It appears, therefore, that in this case the series of fourth differences consists of a constant repetition of the number 24. Now, a slight consideration of the succession of arithmetical operations by which we have obtained this result, will show, that by reversing the process, we could obtain the table of fourth powers by the mere process of addition. Beginning with the first numbers in each successive series of differences, and designating the table and the successive differences by the letters T, D^1 D^2 D^3 D^4, we have then the following to begin with:--

T D^1 D^2 D^3 D^4 1 15 50 60 24

Adding each number to the number on its left, and repeating 24, we get the following as the second terms of the several series:--

T D^1 D^2 D^3 D^4 16 65 110 84 24

And, in the same manner, the third and succeeding terms as follows:--

No. T D^1 D^2 D^3 D^4 1 1 15 50 60 24 2 16 65 110 84 24 3 81 175 194 108 24 4 256 369 302 132 24 5 625 671 434 156 24 6 1296 1105 590 180 24 7 2401 1695 770 204 24 8 4096 2465 974 228 24 9 6561 3439 1202 252 24 10 10000 4641 1454 276 11 14641 6095 1730 12 20736 7825 13 28561

There are numerous tables in which, as already stated, to whatever order of differences we may proceed, we should not obtain a series of rigorously constant differences; but we should always obtain a certain number of differences which to a given number of decimal places would remain constant for a long succession of terms. It is plain that such a table might be calculated by addition in the same manner as those which have a difference rigorously and continuously constant; and if at every point where the last difference requires an increase, that increase be given to it, the same principle of addition may again be applied for a like succession of terms, and so on.

The common process would be as follows:--

Add to tbrJar First Page Next Page

Back to top Use Dark Theme